
1

A guide to using flowcharts within
‘PICAXE Editor 6’

to simulate and program a
PICAXE microcontroller

© Copyright Revolution Education Ltd and New Media Learning 1999-2014.

Copyright is waived in the following circumstances: small number of copies may be made for
use in the purchaser’s school/college for use alongside PICAXE hardware.
These copies may not be sold or made available outside the purchaser’s school.

2

Overview
PICAXE Editor 6 provides a graphical flowchart environment for designing, testing, editing and
downloading control sequences for PICAXE microcontrollers.

PICAXE Editor 6 now incorporates, and hence replaces, the previous ‘Logicator for PICs’ product. To
select the Logicator colour scheme right click over the flowchart and select the Colour Scheme menu.

The wide range of PICAXE commands allows the user to control output devices, such as motors and
LEDs that are connected to the PICAXE microcontroller. We can switch devices on or off in
sequences using: timing, counting, repetition, and decisions based on signals from digital and
analogue sensors that are connected to the PICAXE microcontroller.

This section of the manual explains how the most common commands are used, giving examples of
the common commands and techniques in the context of possible school projects.

It is organised under the following headings:

1. How to build, edit and test run a flowchart

2. Outputs
This section shows: how to switch output devices and motors connected to outputs of a PICAXE
microcontroller, using Outputs, Motor, Sound and Play commands; how timing can be built into a
control system using Wait or Sleep commands; how the Serout command can be used to output
serial information from the PICAXE microcontroller.

3. Inputs
This section shows: how to check the state of digital sensors connected to a PICAXE microcontroller
using the Decision command; how to use the Interrupt command for instant response to digital
sensors; how to use the Compare command to make use of readings from analogue sensors
connected to a PICAXE microcontroller, in a control system.

4. Procedures
This section shows the important technique of building a control system as a number of linked sub
systems.

5. Variables
This section shows: how to create counting systems using Inc and Dec commands; how timing can be
built into a control system; how Expression, In and Random commands are used to give a value to a
variable; how Read and Write commands are used to store and access values of variables using the
PICAXE microcontroller’s EEPROM memory.

Quick Start
If you are unfamiliar with the flowchart approach to building control systems, it is a good idea to
begin by familiarising yourself with the most commonly used commands, which are: Outputs, Wait,
Motor and Decision. Use File>Open Samples and Section 1 (“How to build, edit and test run a
flowchart”) as a reference to help learn how flowcharts operate.

3

Section 1. How to build, edit and test run a flowchart

To create a new flowchart click File>New Flowchart or use the toolbar ‘New Flowchart’ button.

You will then see the following screen:

Flowchart - This is the central area where your flowchart is drawn.

Toolbox - This is the collection of available commands to drag onto the flowchart

Ribbon/Toolbar –

 This is the collection of shortcut buttons at the top of the screen to save/paste etc.

Workspace Explorer -

 This is where the PICAXE microcontroller type, COM port etc. are selected

Simulation Panel –

 This displays the animated simulation when the program is run ‘on-screen’

Code Explorer / Memory Panel –

 These display the values of the variables when a simulation is in progress

Statusbar - This is at the bottom of the screen and displays the simulation speed slider etc.

4

Selecting the correct PICAXE type

Before the flowchart is drawn the correct PICAXE microcontroller chip type, download cable COM

port and simulation image should be selected from within the Settings tab on the Workspace

Explorer.

Note that the input/output pin configuration (e.g. for a PICAXE-08M2 chip) is setup within the Start

command on the flowchart, not within the Workspace Explorer.

Note that if you have the wrong PICAXE chip selected the available input/output pins displayed in

the flowchart command cell dialogs will not be accurate. If the PICAXE type you are using is not

currently shown in the drop down list use the File>Options>Compilers menu to display the chip type

you wish to use.

5

NOTE: This section deals only with drawing
the flowchart. Details of how to use the
various commands are given later.

Adding a command cell
Drag the required command from the toolbox
and place it on an unoccupied cell. Most
commands have their own Cell
Details dialog box which allows you to enter
the command details. Double click on the
command to open its Cell Details dialog box,
and set the details of the command as
required. When you have set the necessary
details, click OK to close the dialog box.

Start and Stop commands
A Start command marks the point where the
flowchart starts running. When the PICAXE
microcontroller is reset or powered up, the
flowchart starts at the first Start command.
Every flowchart must have at least one Start
command. A flowchart will stop running
whenever a Stop command is reached.

For PICAXE-M2 parts you can have up to 8
Start cells on each flowchart.

The first Start command is also used to set
which of the PICAXE microcontroller pins you
wish to use as inputs and which pins you wish
to use as outputs.

Labelling a command
It can be useful to give a command a label
which identifies what it is used for, e.g.
“switches on lamp”. Each cell is given a
default label automatically, but you can edit
this on most commands if desired.

You can also add a line comment above the
cell.

The cell label and line comment do not affect
the operation of a command; they are only a
label for ‘humans’ to read.

Comment commands
Comment commands allow you to add longer
explanatory notes to a flowchart. The number
of characters actually appearing in a
Comment cell on the flowchart will depend on
factors such as the Zoom setting and screen
setting.

Comments have no effect on the operation of
a flowchart.

Explanatory information can be added to the flowchart
by using command labels and Comment commands.

6

Selecting a block of commands
Click on the top left corner of the block of
cells. Hold down the Control Key (Ctrl) and
click on the lower right corner of the range of
cells. Alternately use the Group Select Tool
from the toolbar.

A block of commands in the selection frame

Selected commands are coloured light blue.
To deselect commands, simply click on
another part of the flowchart.

Deleting a command
Click on the command to select it. Selected
commands are coloured light blue. Press the
Delete key to delete the selected command.
To delete a block of commands, select the
block and press the Delete key.

Moving commands
To move a single command or a block of
commands, select the area and drag it to its
new position.

Cutting, Copying and Pasting
Use the Cut, Copy and Paste options from the
Edit menu to cut or copy selected commands
or blocks of commands and paste them either
into another part of the same flowchart or
into a different flowchart.

Alternatively, you can copy commands or
blocks of commands within a flowchart by
first selecting them and then holding down
the Ctrl key as you drag them to their new
position. Remember that copied commands
will retain their existing cell details.

Inserting/deleting rows/columns
Right click over the flowchart and select
Column / Row and then Insert or Delete as
required from the context menu.

Note also that if you drop a command over an
existing command the whole flowchart will be
automatically ‘shuffled down’ so that the new
command can be inserted in a newly added
row.

7

Line Routes
Lines can be drawn through the middle of a
cell, or in either one of the two rails between
cells. Lines must be drawn in the direction
that you want flow to take when the
flowchart runs.

Drawing Lines

Click on the Line Drawing icon on the
toolbar to select drawing mode.

The mouse cursor changes to a pen icon.
Click at a command cell where the line should
start. Now drag the pointer along the straight
route you wish to draw. A dotted line will
show where the route will be drawn. At a
corner release the mouse button to complete
the line. Then click and drag again to continue
drawing a new line.

Right click to end drawing mode.

Drawing mode can also be deselected by
clicking the arrow icon on the toolbar.

Routes can be drawn through cells or between rails.

Lines can only be drawn vertically or
horizontally. Always draw the line in the
direction of the flow, as indicated by the
arrows.

Tip
By holding down the Control key, the arrow
keyboard keys can also be used to draw lines.

Deleting Lines
Click at the beginning of the route to be
deleted, and press the Delete key.

When you draw a new route from a
command, the existing route from the
command will automatically be deleted.

To delete a route without deleting the
command in which it starts: first click on the
command to select it. Then hold down the
Ctrl key as you press the Delete key.

Grid
The grid can be hidden or displayed via the
Grid toolbar icon. Lines can be drawn in either
the large command cells or the small line
cells.

Connectors
Lines cannot cross. Therefore to connect a
line to a completely different position in the
flowchart use a connector pair. Draw the line
into the first connector and then out of the
second connector (which is dragged to a
different flowchart position).

8

How to test run a flowchart

Before you download a flowchart to a PICAXE
microcontroller, it is useful to be able to check
that it works as you intend it to. Flowcharting
mode has a number of features that allow you
to test run the flowchart in the software.

1. The Digital Panel
As a flowchart runs, the Digital Panel shows
the changing state of outputs, motors and
inputs as they would be if the flowchart had
been downloaded to a PICAXE
microcontroller.

2. Simulating digital inputs
To change the state of an input simply click on
the input in the Digital Simulation Panel.

The function keys on the computer keyboard
may also be used to simulate portC inputs
while a flowchart is running.

<Shift> + Function keys <F2> to <F9> will
simulate digital sensors connected to inputs
C.0 to C.7 on a PICAXE microcontroller. Key F2
simulates input 0; key F9 simulates input 7.

3. Simulating analogue inputs
The Values Panel allows you to simulate the
changing reading from analogue sensors while
a flowchart is running. Identify the sensor
which you wish to simulate, and change the
value in the byte column to vary the
simulated reading from 0 to 255.

4. Run and Stop

To test run a flowchart click the Run button
on the toolbar or press <Ctrl>+<F5>

To stop a flowchart running, either click the
Stop icon or simply click anywhere in the
flowchart.

As the flowchart runs, the flow of control is
highlighted so that you can follow it. If you
want to slow down the speed at which flow is
highlighted is controlled by the slider in the
status bar in the bottom right corner of the
screen

5. Breakpoints
Right click to add a breakpoint flag to any cell.
When the simulation reaches this point the
flowchart will then pause.

9

6. Variables and EEPROM display
If your flowchart uses variables, it is useful to
display the Code Explorer and memory
windows when you test run it. The changing
values of any of the variables that are used in
the flowchart will be displayed as the
flowchart runs.

To manually change a value pause the
simulation and then double click on the
appropriate value in the memory panel.

Downloading a flowchart into a
PICAXE chip

1. Connect your PICAXE project to the
computer by the AXE027 USB download
cable.
2. Connect power to the PICAXE circuit board,
normally for 3x AA batteries (4.5V).
3. Note; your PICAXE chip, if already
programmed, may start running the program
from its memory – this will not affect the
programming process.
4. Click the Program button on the PICAXE
toolbar or press <F5>.
5. The programming progress window will
appear.

6. Programming times vary depending on the
type of chip and amount of program code –
the larger the flowchart, the longer the
programming time.
7. If successful, programming is complete
when the progress bar disappears.

If you are having difficulty programming try
the hard reset procedure as described in part
1 of the PICAXE manual.

10

Displaying and using BASIC
PICAXE Editor is also able to convert any
complete flowchart into BASIC.

BASIC is a text based language that is used
throughout the world to program everything
from PICAXE microcontrollers to personal
computers.

Why Convert?
Flowcharts are easy to understand and quick
to build. BASIC programming languages offer
more complexity to advanced level users and
the ability to covert a flowchart into BASIC
offers a way of learning how BASIC programs
are written.

Converting a flowchart into BASIC
1. Design your flowchart as normal and test
the program using the flowchart simulation
tools.

2. From the PICAXE toolbar tab, choose the
‘Convert to BASIC’ button.

3 The BASIC text window is then displayed
containing the conversion of your flowchart.

Notes:
Only commands that are in the flow of your
program are converted.

Code in the Flowchart BASIC Conversion
window can be edited and then re-
programmed into the selected type of PICAXE.

It is not possible to convert from BASIC
backwards to a flowchart.

Using the BASIC command you can add
sections of BASIC code into a flowchart.

For full information on the use of BASIC to
program PICAXE chips see the PICAXE website
at www.picaxe.com

11

Section 2. Outputs

High / Low commands

The high and low commands are used to
switch a single output on or off.

High command Cell Details box

Outputs command

We can use an Outputs command to switch
on or off multiple outputs at the same time.

The Cell Details box (below) shows the
number of outputs available for use.

Outputs command Cell Details box

Each one of the digits in the Output Port
represents one of the outputs on the PICAXE
microcontroller. You can click each digit to set
it to switch an output device on or off.

This means: switch this output on.
This means: switch this output off.
This means: ignore this output
i.e. leave it in the state in which it was

set by the previous commands.

12

Wait command

A Wait command makes a running flowchart
pause for the number of seconds specified
before the next command is carried out. You
can use it to keep output devices switched on
or off for a set time. Use its Cell Details box to
enter a number of seconds (Max 65s. Min
0.001s) or a Variable.

Example
A PICAXE microcontroller has 3 LEDs
connected to outputs 0, 1 and 2. The
flowchart shown top right will switch them
progressively on and off in a timed sequence.
The sequence will begin as soon as the chip is
powered and will stop at the STOP command -
so it will do the sequence just once.

The flowchart shown above will continue to
repeat the sequence until power to the chip is
switched off. Notice that another Wait
command has been added to the repeating
sequence. The PICAXE microcontroller
operates so quickly that, without Wait
commands, the LEDs would switch on and off
so quickly that you would not see it
happening.

13

Sound Command

Use a Sound command to send a pulsed signal
to a piezo sounder connected to an output of
a PICAXE microcontroller. You can use a
sequence of sound commands to play a
simple tune.

Play command

Most PICAXE chips have 4 pre-programmed
internal tunes, which can be output via the
Play command.

As these tunes are often included within the
PICAXE bootstrap code, they use very little
program memory.

The cell details require that the number of the
tune is set and if you wish the outputs to flash
in time to the tune.

The Tunes are:
0 - Happy Birthday
1 - Jingle Bells
2 - Silent Night
3 - Rudolf the Red Nosed Reindeer

The following example will play Happy
Birthday while flashing output 4.

14

 Tune Command

Working in a similar way to the Play
command, the Tune command allows special
musical tunes to be played.

The difference with Tune command is that it
converts RTTTL mobile phone ringtone files to
PICAXE tunes and plays them with or without
flashing outputs.

RTTTL ringtone files are freely available on the
internet (there is a very wide range of tunes
available) and these can be downloaded as
small text files. The files contain the notes and
timings that make up the tune. The Tune
Wizard converts these ringtones to a PICAXE
tune command upon download.

 Play User Tune dialogue box

Once you have downloaded your ringtone file
(ensure it is an RTTTL format), save it to disk
and open the cell details box for the Play User
Tune command.

Click the ‘Select Ringtone…’ button to browse
the computer to find the file.

Select the output to flash using the drop
down box. The chosen outputs switch on/off
in time to the tune. The Flash Mode can
switch outputs 0 and 4. Ensure that you have

configured the I/O pin 4 as an output using
the Select PICAXE dialog in order to see all of
the available options.

In order to use the ringtone in a simulation
you must click the ‘Generate .wav’ button.
Finally, choose the OK button.

Note that, unlike the Play Command, the
Tune requires much more memory in the chip
as all of the notes have to be specially
programmed into the chip. If you wish to play
your tune a number of times, use the Play
User Tune command in a Procedure to save
memory.

15

Motor command

The Motor command allows you to use pairs
of outputs on a PICAXE microcontroller to
switch a motor forward, reverse or off.

Use its Cell Details box to set the motor or
motors to drive forward or reverse; or to stop.

Remember that the direction in which a
motor turns depends on which way current
flows through it, and therefore on the way it
is connected to power. For this reason, the
direction arrows indicate only that the
directions will be different; not the actual
direction in which motors in the project will
turn.

Motors are labelled A,B,C or D. Motor A is the
motor controlled by outputs 0 and 1 of the
PICAXE microcontroller. Motor B is the motor
controlled by outputs 2 and 3, and so on. See
“Connecting Motors”

NOTE: Outputs and Motor commands both
use the same output lines to switch the
outputs of a PICAXE microcontroller. The
default state of both commands is such that
they will automatically switch off any outputs
that are not set ‘on’.
So, to avoid inadvertently switching off an
output device, un-check the select boxes of
unused motors in a Motor command to

disable them, and set unused outputs in a
Outputs command to their ‘ignore’ state

Example
A steerable buggy is usually driven by two
motors, one powering each driving wheel
with a free-running jockey wheel to keep it
stable. The flowchart below shows how a
sequence of Motor commands can be used to
drive a buggy which has one motor connected
to outputs 0 and 1 (motor A) and the other
motor connected to outputs 2 and 3 (motor
B).

The Motor commands have been given labels to show
what they do. The table beside each one shows how its
Cell Details have been set.

16

Sleep command

This command puts the PICAXE
microcontroller into low power mode for a
specified number of seconds.

This command can be used to save battery
power in your project. All output devices will
be left in their current condition, but signals
from input devices will not be responded to
while the chip is in sleep mode.
The Cell Details box is used to set the number
of seconds of sleep mode required (this is in
the form of number of multiples of 2.3
seconds). For example, a setting of 10 will
sleep for 23 seconds.

Note that Sleep times are not as accurate as
Wait times.

Out command

When flow passes through an Out command,
the output portB is set to the binary value of
the number entered in the command.

If you are familiar with the binary system then
the Out command is a convenient way of
switching combinations of outputs on or off.

In the table above the ‘bits’ can be switched
on by sending the selection value of the bit.,
e.g. ‘Out 4’, which will turn on an LED at B.2.

LCD

This command can be used to display a
message on an LCD screen attached to a
PICAXE-driven circuit board.

In the cell details window a message can be
written over two lines if required and an
output pin is assigned.

This command will be simulated if the
flowchart is run from Simulate > Run.

A small LCD screen window will pop up during
the run to display the LCD message (make
sure the simulation pin for the LCD is correctly
set under File>Options>Simulation)

 Simulated LCD screen

17

Serout Command

This command allows output information to
be sent from the PICAXE microcontroller to a
device such as a serial printer, a serial LCD
screen or another PICAXE which is connected
to an output of a PICAXE microcontroller.

The first box is used to select the output pin
on the PICAXE microcontroller to send the
data through.

In the Data box either type in the ASCII text
you wish to send or raw data.
If sending raw data codes the ASCII box must
be unchecked.
ASCII codes are useful for sending commands
to LCD screens e.g. clearing the display.
Details of these control codes can normally be
found with the instructions for the particular
devices.
You can send a series of text characters e.g.
“Hello” or a series of ASCII codes e.g. “254,1”.
In the latter case, ASCII codes must be
separated by a comma.
If you wish to send the value held in a
variable, type in the variable name in square
brackets e.g. “[B]”. Note you must use capital
letters for the variable.
The last item to set is the serial mode. Set the
mode to that specified by the device you are
sending data to.

Example
The flowchart shown below will display the
word “Hello” on an LCD screen connected to
output pin B.2 of a PICAXE microcontroller.

A sequence to display the word ‘Hello’

Sertxd Command

The sertxd command is similar to the serout
command, but acts via the serial
output pin rather than a general output pin.
This allows data to be sent back to
the computer via the programming cable. This
can be useful whilst debugging.

See the PICAXE Manual for more information

18

Servo Command

Servos, as commonly found in radio control
toys, are a very accurate motor/gearbox
assembly that can be repeatedly moved to
the same position due to their internal
position sensor. Generally servos require a
pulse of 0.75 to 2.25ms every 20ms, and this
pulse must be constantly repeated every
20ms. Once the pulse is lost the servo will
loose its position.

The Servo command starts a pin pulsing high
for length of time pulse (x0.01 ms) every
20ms.
This command is different to all other
commands in that the pulsing mode continues
until another servo command or outputs
command. Outputs commands stop the
pulsing immediately. Servo commands adjust
the pulse length to the new pulse value,
hence moving the servo.

The cell details for the servo command have
two settings; the output pin that the servo
motor is connected to and the pulse time.
The pulse time can be a value held in a
Variable. Note that the value for the pulse
time MUST be in the range 75 to 225. The
servo motor may malfunction if the pulse is
outside of this range.

 Servo command cell details

Example
The flowchart below will move a servo motor
attached to output B.2 from one extent of its
travel to the other, repeating continually.

 Using the Servo command

19

Pulsout Command

The PulseOut command generates a pulse
through the chosen output. If the output is
initially off, the pulse will be on, and vice
versa.

There are three items to set in the cell details
box for the PulseOut command below; the
output pin to send the pulse through, and the
length of time that the pulse should operate
for. The final option is the multiple for the
value entered (10us, 1ms or 10ms).

The pulse time is in multiples of the multiplier
selected (the greatest possible legal value is
65535 x10us = 655350 us = 655 ms)

Note that PICAXE Editor cannot simulate the
action of the PulseOut command.

Example
The flowchart below sends a pulse of
1500us (1.5ms) out of output pin B.2 every
half second.

 Using the PulseOut command

20

PWM Command

The PWM command is used to provide
‘bursts’ of PWM output to generate a pseudo
analogue output on the PICAXE-08/08M (pins
1, 2, 4). This is achieved with a resistor
connected to a capacitor connected to
ground; the resistor-capacitor junction being
the analogue output. PWM should be
executed periodically to update/refresh the
analogue voltage.

 PWM dialogue window

The parameters are: the Output pin used, the
analogue level 0-255 (Duty) and the number
of 5ms cycles that specifies the duration.

21

Section 3. Inputs

Input devices such as switches and sensors
send information from the outside world into
the control system. Output devices are
switched on or off in response to the
information provided by input devices.

Example
A buggy is often fitted with micro-switches so
that if it approaches an obstacle, a
microswitch will be pressed.

The information that the switch has been
pressed can be used in the system to switch
off the motors driving the buggy, and start a
sequence of movements to move around the
obstacle.

A microswitch is a digital sensor. It has only
two states - “on” (or “closed”) and “off” (or
“open”).
These states are often labelled by the digits 1
and 0, which is why the sensors are called
digital sensors.

Example
A controlled hot water system includes a
temperature sensor which constantly
monitors the water temperature.

The water heater is switched on and off in
response to the information provided by the
sensor. If the water temperature falls below a
set level, the heater is switched on until it
reaches that level again. Then the heater is
switched off.

A temperature sensor is an analogue sensor.
It provides a reading which changes in line
with the changing level of whatever it is
sensing.

22

Section 3A. Digital Inputs

Decision command

Use this command to test the state of a digital
sensor connected to a digital input of a
PICAXE microcontroller.
When flow reaches a Decision cell, it
continues in either the Yes or No direction
depending on the result of the decision test.

This Decision command is testing the state of a
microswitch. If the switch is pressed, flow will go in the
Yes route; if it is not pressed, flow will go in the No route.

The Cell Details box of the Decision command
is shown below. The Input Pattern area shows
the number of digital inputs available for use
on the PICAXE microcontroller you have
selected. Any unavailable inputs are shown
without a number label and cannot be clicked
upon.

Each one of the digits in the Input Port
represents one of the digital inputs on the
PICAXE microcontroller. You can click each
digit to set it to one of three states:

This means is this sensor ON?
This means is this sensor OFF?
This means ignore this sensor.

Drawing routes from a Decision
command

The first line that you draw from a Decision
command is the “Yes” direction, and the
second line is the “No” direction.

Tip; you can swap the “Yes” and “No” routes
by right clicking on the command and
choosing “Swap Yes/No”.

23

Example
A PICAXE microcontroller is being used to
control a security system. A buzzer is
connected to one of the outputs. A pressure
pad is connected to input 0, and a push switch
is connected to input 1.

Below is a flowchart for the control system,
showing how the two Decision commands are
set. When the chip is powered, the pressure
pad is tested. If it is not pressed, flow will go
in the N route and will continue to go round
this loop until the pad is pressed. When the
pad is pressed, flow will go in the Yes route
and the buzzer will be switched on. The
buzzer will stay on until the push switch is
pressed. When it is pressed, the buzzer will
switch off and flow will return to testing the
pressure pad.

 Security system

A similar flowchart could be used to control a
security system for a drawer. In this case, the
sensor could be a micro-switch which is kept
closed (on) as long as the drawer is shut. If
someone opens the drawer, the microswitch
will be open (off).

The flowcharts below shows two different
ways of using a Decision command to test the
micro-switch in this system.

Notice that the direction of flow depends on how the
command is set.

24

Example

Home security systems often have a number
of sensors in different parts of the house. If
any one of them is activated, the alarm is
switched on. The flowchart below shows a
security system which has three sensors and a
reset switch.

Security system with three sensors (OR function).

Two of the sensors are the magnetic type for
windows which have the magnet fixed to the
window frame and the reed switch fixed to
the window. As long as the window is shut,
the magnet keeps the reed switch contacts
closed (“sensor on”). When the window is
opened and the magnet is moved away from
the switch, the contacts are open (“sensor
off”). Therefore, the two Decision commands
have been set to go in the Yes route if the
sensor is off (0).

The system shown is an OR function.

Some security systems have two separate
reset switches arranged in an AND function so
that the system is reset only if both switches
are pressed together. The flowchart below
shows how you can set a Decision command
to test two switches in this way.

Decision command set to check if two switches are
pressed at the same time (AND function).

25

Example

In the flowchart shown below, the output is
switched on when a push switch is pressed.
When you stop pressing the switch the output
switches off. In other words: IF the input is on,
THEN switch the output on, ELSE switch the
output off.

This is the equivalent of a simple electrical
circuit containing a normally open push switch
and an output device.

The difference is that you can change the way
the system works in software, by simply
changing over the Yes and No on the Decision
command :

“Normally closed” switch effect.

Example

A mono-stable device has only one stable
state. It changes state when it is triggered by
an input, and stays in that state for a certain
time. It then goes back to its original state.

no-stable” function.

Example

A bi-stable device has two stable states. It
changes state when it is triggered (set) by an
input, and stays in that state until it is
triggered (reset) by a second input. It then
goes back to its original state. The flowchart
below shows how this function can be
produced in PICAXE Editor.

26

Interrupt

An Interrupt instantly captures the flow of
control whenever a preset digital input
condition occurs to trigger it e.g. when a
switch is pressed.
When the interrupt is triggered flow jumps
immediately to the Interrupt command and
then carries out any commands which follow
until it reaches a Return command. It then
returns to the point which it was at when the
Interrupt occurred.

In order to use an Interrupt, the PICAXE must
be told to look for the input condition. This is
done through the Interrupt Setup command.
There are two options in the command –
Enable or Disable.

To prevent the Interrupt retriggering itself,
the Interrupt is automatically disabled once it
is triggered. To re-enable it another Interrupt
Setup command is required.

Example

A PICAXE microcontroller running a
continuous loop flashing lights needs to be
able to react to a button press and play a
warning sound.

The Interrupt is used to capture the flow and
play a sound. The interrupt is then enabled
once again before returning to the point at
which it left the main flow.

Note that the Interrupt MUST have an
associated Return command and will not be
triggered again until this Return command has
been reached. There is no limit to the number
of commands between the Interrupt and the
Return. It is a common technique to add a
‘Enable Interrupt’ command just before the
Return command, so that when the Interrupt
sub procedure returns the interrupt is re-
enabled.

Only one Interrupt can be used per flowchart.

27

SerIn Command

The SerIn command is used to receive serial
data into an input pin of the microcontroller.
It cannot be used with the serial download
input pin, which is reserved for program
downloads only.

The cell details box for the SerIn command
has three boxes to set.

 SerIn command cell details box

The input pin is the input on the PICAXE that
the data is to be received through. The
Variable option is a variable location that the
data is stored into once it is received.

Lastly, the mode option specifies the baud
rateand polarity of the signal. When using
simple resistor interface, use N (inverted)
signals. When using a MAX232 type interface
use T (true) signals. The protocol is fixed at
N,8,1 (no parity, 8 data bits, 1 stop bit).
For best results do not use a baud rate higher
that 4800 on 4Mhz chips.

The SerIn command forces the PICAXE chip to
wait until serial data is received through the
chosen input. This data is stored in the chosen
variable.

Example

Serial data is being received from another
PICAXE chip and needs to be stored in the
EEPROM.
In the flowchart shown below, the serial data
is read into Variable A through input pin2. The
Write command is used to store the value in
Variable A in the EEPROM. This process is
repeated 16 times to fill all the available
EEPROM memory locations

 Using the SerIn command to receive serial data

28

Pulsin Command

The PulsIn command measures the length of a
pulse through an input pin. If no pulse occurs
within the timeout period, the result will be 0.

If State = 1 then a low to high transition starts
the timing, if state = 0 a high to low transition
starts the timing.

There are three items to set in the PulseIn
command; the input pin, the State and the
Variable to store the result in. The result is
measured in multiples of the selected range
10us/1ms/10ms and is a value of 1 – 255.

 The cell details box for the PulseIn command

Use the Count command to count the number
of pulses with a specified time period.

Because the Pulsin Command works so quickly
this command cannot be simulated in the
PICAXE Editor software via mouse clicks.
Instead it takes the value from the simulation
panel.

Count Command

The Count command checks the state of the
input pin and counts the number of low to
high transitions within the time ‘period’. Up to
255 transitions can be counted.

 The cell details box for the Count command

Take care with mechanical switches, which
usually cause multiple ‘hits’ for each switch
push as the metal contacts ‘bounce’ upon
closure.

29

Section 3B. Analogue Inputs

Analogue command

This command is used to read an analogue
value and decide if it is between two preset
values (called the ‘threshold values’). If the
value is between the two values the ‘yes’
route is followed, if not the ‘No’ route is
followed.

ReadADC

This command is used to read an analogue
value from an analogue channel and assign
the value to a variable. It is equivalent to
using an Expression to set a variable
equivalent to an analogue channel, as in the
expression: varA = A1. The value can then be
tested using a Compare command.

30

Calibrating a sensor

To use an analogue sensor it is necessary to
know the threshold value, the value at which
you want the system to be activated.

Normally this value is found by
experimentation – e.g. the threshold value for
a light sensor would be the value which is half
way between the ‘bright light’ sensor value
and the ‘dark’ sensor value.

The PICAXE Editor includes a very useful
calibration wizard that allows you to see these
sensor values by transmitting them in real
time via the programming cable to the
computer screen.

To use the calibration wizard select the
appropriate input pins in the table (up to 4
sensors can be tested at the same time) and
then click ‘Start Logging’. The sensor values
will be updated on screen every second.

The threshold value is then normally
calculated as the mid position between the
‘average high’ and ‘average low’ values, so in
the graph above a threshold value of 150
would be ideal. Therefore an analogue
command would be setup as 0<C.2<150

Debug

To read analogue values ‘live’ from a PICAXE
chip we can also use the Debug command in a
loop like in the flowchart below.

We then click the Debug button on the Code
Explorer. The value of varA will update very
second.

31

ReadTemp

This command is used to read the
temperature value (in degrees Celsius) from a
D18B20 temperature sensor.

Ultra

The Ultra command is use to detect an object
using the SRF005 ultrasonic sensor.
When the output and input pins area assigned
to the sensor position the command returns
the distance to an object (cm) and assigns this
value to a variable.

32

Compare command

This command can be used to check the
reading from an analogue sensor connected
to an analogue input of a PICAXE
microcontroller. The most common use of an
analogue sensor in a control system is to
switch output devices on or off when the
reading from the sensor reaches a particular
level. This level is sometimes called the
“threshold”.
When flow reaches a Compare cell, the
software checks the current reading from the
specified sensor, and compares it with the
threshold that you have set. Flow will
continue in either the “Yes” or “No” direction
depending on the result of the comparison.

The Cell Details box of the Compare command
is shown below.

Cell Details box of the Compare command

1. Use box one to select the sensor that you
want the command to check.
Analogue sensors are labelled A0 to A3
according to which pin on the chip they are
connected to. Type in the number of the
sensor you want the command to check, or
select it from the drop-down box.

2. Use boxes two and three to complete the
comparison. The drop-down list in box two
contains a list of operators such as “greater
than” (>), “less than” (<), and “equals” (=).
Select the one that you require. NOTE: It is

usually better to use an operator such as
“greater than or equals” (>=) instead of
“equals”, because analogue sensor readings
can fluctuate rapidly, and you may find that
the checking of the sensor reading never
actually coincides with the exact threshold
level.

3. Use box three to set the threshold level.
Type in a number between 0 and 255, or
select it from the drop-down list.

Example one
A PICAXE microcontroller is being used to
control a lamp. A light sensor is connected to
analogue input 0. The system will switch on
the lamp automatically in dark conditions.
Below is a flowchart for the system.

System to switch on a lamp automatically in dark
conditions.

The Compare command checks the reading
from the light sensor. If the reading is less
than or equal to 50, flow will go to the Yes
route and switch on the lamp; if the reading is
greater than 50, flow will go in the No route
and switch off the lamp. The system could be
extended as shown below. This system
controls three separate lamps, which it
switches on one by one as darkness falls.

System to switch on three lamps in response to changing
light levels.

33

Example

A PICAXE microcontroller is used to make a
light meter for use by cricket or tennis
umpires to decide when to abandon play
because of bad light. A light sensor is
connected to analogue input 0. An LED is
connected to each one of the eight outputs. In
bright sunlight, all the LEDs will be lit. As the
light level falls, the LEDs will switch off one by
one.

Below is the flowchart for the system.
Notice the use of the Out command to switch
on combinations of outputs.

 Light meter system

Using Infrared control

When using PICAXE chips, commands are
available to support Infrared communication
between PICAXEs and TV style remote
controls.

Irout

This command is used to transmit the infrared
data to a Sony™ protocol device. It can also be
used to transmit data to another PICAXE
circuit that is using the irin command.
Data is transmitted via an infra-red LED
(connected on output 0) using the SIRC (Sony
Infra Red Control) protocol.

When using this command to transmit data to
another PICAXE chip the Device ID used must
be value 1 (TV).

The irout command can be used to transmit
any of the valid TV commands (0-127). Note
that the Sony protocol only uses 7 bits for
data, and so data of value 128 to 255 is not
valid.

34

Irin

To receive information from an Infrared
source, the InfraIn command is used. The
command will wait for a new infrared signal
from an infrared TV style transmitter. It can
also be used to receive an InfraOut signal
from a separate PICAXE chip.

All processing stops until the new command is
received. The value of the command received
is placed in the chosen Variable.

The cell details are simple; only a Variable must be set.

The basic circuit required for InfraIn is as
follows. The device on the left side of the
circuit is an IR receiver LED, part code LED020.

Example

In the following flowchart a signal is received
from a TV Infrared remote control. Lights are
switched on if key 1 is pressed.

The irin command waits until a signal is
received, and saves this as a number in
Variable A.

The Compare determines is this is ‘1’ and the
Yes route switches on the lights.

35

Section 4. Procedures

PICAXE Editor software provides a clear, step-
by- step method of building a complex control
system, by creating a number of linked
subsystems called “sub procedures”.
.

How to build a sub procedure

Use a Procedure command to begin the
procedure. Drag the command onto the
flowchart and place it separately from the
START command as shown below. Double
click on the command to open its Cell Details
box. Type in any appropriate name, and click
OK. The software automatically puts the name
into capitals.

 Placing the Procedure command

Use other commands as normal to create the
procedure.

Place a RETURN command at the end of the
procedure as shown in the flowchart below.

This procedure, called FLASH will switch on selected
lamps for 3 seconds and then switch them off

How to use a procedure
Once you have built a procedure, you can call
it into use whenever you like in the flowchart
by using the Gosub command, as shown
below.

The GOSUB command calls the procedure into use.

Drag a gosub command onto the flowchart.
Place it at the point where you want the
procedure to be called into use. Double click
on the command to open its Cell Details box.
Type in the name of the procedure or select it
from the drop-down list. Click OK.

Note that all the procedures that have been
built in a flowchart are automatically listed in
the drop-down box. When flow reaches a
gosub command, it jumps to the Procedure
command with the same name. When the
flow of control reaches a Return command,
the flow jumps back to the gosub command
that called the procedure. To test run the
whole flowchart, click on the START command
to highlight it, and click System>Run

In the cell details box for the gosub command
it is also possible to set the number of times
top run the subprocedure. This will simply
repeat the gosub for the set number and then
continue as normal.

36

Example

A PICAXE microcontroller is used to control a
system in a child’s toy which plays a tune
when it is hugged. A piezo transducer is
connected to an output pin, and a push switch
is used to sense when the toy is hugged. The
flowchart for the system is shown below. The
tune is created as a procedure which can be
tested and edited separately from the main
routine.

Using a Procedure to play a tune after an input condition
is met

Example

The flowchart shown below is a control
system for a sliding door. When a switch is
pressed, the door opens. It stays open for ten
seconds and then closes again. The system
uses limit switches to sense when the door is
fully open and fully closed. The motor is
halted in response to the feedback from these
microswitches.

Sliding door control system using procedures

37

Example

A keypad is a useful input device. This
example shows how the PICAXE Editor
software can be used to scan a keypad in a
project in which a three digit number has to
be entered to open a solenoid-operated lock.

Connect the keypad to a PICAXE
microcontroller using inputs and outputs as
shown right.
The flowchart below shows how the scanning
is done.

In this case, the code number uses a digit
from each one of the first three rows (e.g. 357
or 268). Each row is scanned in turn using a
procedure.

To begin with, the row is made “live” by
switching on the output to which it is
connected. Then a Decision command checks
for the appropriate key in that row to be
pressed, by testing for that input to be on.
When the correct key is pressed, flow passes
on to the next procedure.

A Flowchart to scan the keypad

When all three digits have been entered
correctly, the solenoid is switched to unlock
the door.

 Keypad connections

38

Designing systems with
procedures

Using procedures, you can design and test
systems either “top-down” or “bottom-up”.

Example

The ‘top-down’ approach

This approach begins with an overall view of
the system (the main routine), and then
creates each part of it separately as a
procedure. The following sequence shows
how it can be used to develop a control
system for a buggy which is fitted with micro-
switches that are pressed if the buggy comes
into contact with an obstacle.
When this happens, the buggy sounds an
alarm and moves round the obstacle.

1. The main routine is created as a series of
Gosub commands as shown right.

2. Then each part of the system is built as
a separate procedure as shown below.
Each procedure can be test run
independently.

Notice that the AVOID procedure uses the top-down approach, so the flowsheet is incomplete at this stage.

Main Routine

39

3. The AVOID procedure shown below has
been built by using the top-down approach.
To clarify the avoiding procedure, each
movement is simply listed as a Gosub
command. Then the details required for the
buggy to make each movement can be dealt
with separately as shown below.

40

Example

The ‘bottom-up’ approach

This approach develops each part of the system separately as a procedure, and then writes the main
routine to link them. The following sequence shows how it can be used to develop a control system
for an animated clown’s head on which the eyes and nose light up and the hat rotates.

1. A separate procedure is built and tested for each one of the three elements, as shown below:

 In this approach, the procedures are created first

2. A main routine is then written to call the procedures into use in the required sequence whenever
a switch is pressed.

 The complete system

This flowchart shows some of the advantages of using this approach. Once a procedure has been
created, it can be called into use as many times as you like within the flowchart. Editing the
sequence is easy.
The gosub commands can be moved around, deleted or copied to change the sequence as required.

41

Section 5. Variables

In PICAXE Editor a variable is a ‘number
container’ that can hold a given value
between 0-255. The variables are called varA
to varZ. This section explains how they can be
used for a variety of mainly counting and
timing purposes.

The current value of a variable can be seen
during a simulation in the Code Explorer
panel.

Counting
The Inc command

Each time flow passes through an Inc
command, 1 is added to the value of the
selected variable (Inc is short for increment).
This is the same as using an Expression
command to make varA = varA + 1.

When you open the Cell Details box, simply
select which variable you want to use, and
click OK.

The flowchart shown below shows how it can
be used to repeat a sequence three times.
Each time that flow goes round the loop, the
FLASH procedure is undertaken, and 1 is
added to the value of variable A.

A Compare is used to check the value of A.
When this value reaches 3, flow will go in the
Yes direction and stop the flowchart.

 Repeating a sequence three times

42

 Cell Details box of the Compare command

1. Use box one to select the variable that you
want the command to check.
2. Use boxes two and three to complete the
comparison. The drop-down list in box two
contains a list of operators such as “greater
than” (>), “less than” (<), and “equals” (=).
Select the one that you require.
3. Use box three to set the number of times
the sequence will repeat. Type in a number
between 0 and 255, or select it from the
dropdown list.

Another use of the Inc command is to count
the number of times something happens – the
number of people passing through a gate or
turnstile for example. This is often done by
using a digital sensor such as a micro switch or
a reed switch placed so that the sensor is “on”
when a person passes. The flowchart below
shows the three commands needed to do
this. Notice that two Decision commands are
used to check the switch. The first command
responds when the sensor is on. Then the
sensor is immediately checked again to see
that it is off before anything else happens.
This ensures a clean signal for the Inc
command to count.

 Ensuring a clean signal from a digital sensor

You may well find that once it is downloaded
into the chip, the flowchart runs so quickly
that even using the two Decision commands
does not give a clean count. If this is the case,
you should include a short Wait before the Inc
command, as shown in the flowchart on the
right. This flowchart is for a system to count
the number of people passing through a
turnstile and to display the number in binary
form, using LEDs connected to each one of
the eight outputs on a PICAXE
microcontroller.

43

Example

A PICAXE microcontroller is used to control a
system for counting cars entering and leaving
a car park using two digital sensors.

 Flowchart for making and displaying a count.

44

The DEC command

This system uses the Dec command which
works in a very similar way to the Inc command.

The difference is that when flow passes
through a Dec command, one is subtracted
from the selected variable.

Example

A seven-segment display is a useful output
device for displaying counting and timing. The
flowchart below is designed to control the
kind of supermarket delicatessen counter
system in which customers take a ticket and
then wait for their turn to be served when
their number is displayed. When the assistant
has served a customer, he or she presses a
switch to display the next number.

The main routine uses an Inc command to
increment (add one to) the value of the
variable A each time the assistant presses the
switch. The DISPLAY procedure makes an
efficient way of translating the current value
of A into an Outputs command which is set to
switch on the appropriate number of outputs

to display the number.

A similar approach could be used with an LCD
screen. In this case, the DISPLAY procedure
would use a series of SerOut commands as
shown below:

Part of an equivalent system that uses an LCD screen to
display numbers.

45

 A “Now Serving....” display system.

46

Timing

To repeat a sequence for a period of time, the
Inc command can be used to count the
elapsed time. The flowchart shown below
shows how it can be used to repeat a
sequence for 10 seconds.

 Repeating a sequence for 10 seconds

A Compare is used to check the value of
Variable A. When this value reaches 10, flow
will go in the Yes direction and stop the
flowchart. Since we know that the FLASH
Procedure will take 1 second to complete,
repeating this for 10 times will take 10
seconds.

47

Setting the value of a variable

The Expression command

The Expression command is used to give a
value to a variable as a flowchart runs. The
variable is given its value as flow passes
through the command. The following example
shows how it can be used.

Example

A container in a warehouse is designed to
hold ten packs of components. A system is
needed to indicate the changing contents of
the container as packs are removed. The next
flowchart is designed to do this.

A digital sensor is used to indicate each time a
pack is removed (notice the use of two
Decision commands to ensure a clean count).
The number of packs in the container is
displayed as a binary count using 8 LEDs
connected to outputs of the PICAXE.

The Dec command counts down, so an
Expression command is used to set the value
of variable A to 10 at the start of the
countdown when the container is full. The
Expression command Cell Details box is shown
below. Use the first two boxes to enter the
expression varA = 10.

 Expression command : Setting the value of a variable

48

Mathematical expressions
A value can also be given to a variable in the
form of a mathematical expression as shown
in the flowchart below. This system counts
the number of times that two separate
switches are pressed, and displays the
combined total. Use all four boxes in the
Expression Cell Details box to enter the
39 expression C=A + B. NOTE: the third box in
the Expression Cell Details box contains a
range of mathematical operators.

 Displaying a combined count

The IN command

The IN command sets the value of a specified
variable to the current binary value of the
portC input port.

For example, if switches connected to inputs 0
and 1 are pressed, then the value of the
variable will be 3. The next flowchart shows
how this can be used to make a simple
security system.

When switches connected to inputs 0 and 2
are pressed at the same time the binary value
of the input port equals 5 (4+1), flow from the
Decision command goes in the Yes direction
and a solenoid-operated lock is opened. If any
other combination of switches is pressed,
flow goes in the No direction.

Security system that responds to pressing two switches

49

The Random command

Using the random command a Variable can be
given a random value between 0 and 255. In
the example shown below, a set of display
lights for a small Christmas tree are connected
to 8 outputs of a PICAXE microcontroller.
Every second the display will change at
random.

Using RND to create a random display of lights

Note that as with all microcontrollers and
computers, the generation of random
numbers is based on a set sequence.

50

Read and Write

When a flowchart run is started, all variable
values automatically reset to zero. So, when
the PICAXE microcontroller is reset or
powered up, all variable values are reset to
zero.

If you want to retain variable values when the
PICAXE microcontroller is powered up or
reset, you can use the WRITE command to
store values in the chip’s data EEPROM
memory. The READ command is used to
retrieve the values from the chip’s memory.
The flowchart below right shows an example
of how the commands can be used. The
following information explains how this
works.

The READ command takes the value which is
currently stored in a selected address (in this
case address 0), and puts it into the selected
variable (in this case variable A). Use the READ
command Cell Details box (below) to enter
the variable and the address from which the
value is to be read.

 READ command Cell Details box

The PICAXE microcontroller’s data EEPROM
memory has 255 separate addresses. Each
one can store a number between 0 and 255.
The EEPROM window displays the contents of
the memory when you test run a flowchart.

 Data EEPROM window

The OUT A command in the flowchart displays
the current value of A using 8 LEDs connected
to outputs of the PICAXE microcontroller.

The Inc A command increments (adds one to)
the value of A each time a switch is pressed.
The new value of A is immediately stored in
address 0 of the EEPROM memory by the
WRITE command. The Cell Details box of this
command is used in the same way as for the
READ command.

When the PICAXE microcontroller is powered
down, the value of A is stored in the chip’s
memory.

When the PICAXE microcontroller is powered
up, the first thing that happens is that the
READ 0,varA command retrieves the value of
A which has been stored in address 0. The
EEPROM window gives an accurate simulation
of the way these commands work when the
flowchart is downloaded.

51

Using READ and WRITE commands to store a count

This flowchart shows how the Read and Write
commands are use to store the number of
times a switch is pressed.

Time

The PICAXE M2 chips have an internal clock
module. The Time On command starts the
clock cycle. The Time Off command will stop
the clock. The elapsed time will be measured
in seconds by the variable ‘Time’.

The flowchart below will measure the elapsed
time until a button is pressed. The Time can
be viewed in the Time panel and in this case
its value is stored in the variable A.

52

BASIC

This command is used as an extension to a
flowchart. Any valid PICAXE BASIC code can be
typed into the command cell window. When
program flow arrives at this command the
BASIC code within the command will be
processed as if it were a procedure.

53

Section 6. Simulations

PICAXE Editor also supports the on-screen
simulation of PICAXE project kits. To start a
Simulation select the Simulate>Connect to
Software Simulation menu.

 The Rudolph Software Simulation

A helper screen can be opened from the right
click Help menu. This tells us which PICAXE
chip the circuit is simulating and how the
inputs and outputs are connected.

 The Rudolph helper window

The simulation outputs will animate as on a a
real-life board and the inputs can be clicked to
generate a simulated input.

With this simulation the student can program
and test the PICAXE kit as thought it was a
real system.

This simulation is also available as a real
circuit board, part AXE107K..

PICAXE Editor also supports connections to
third party circuit and robot simulator
software such as ‘Webots’. When the
simulation is run within PICAXE Editor the
simulation on the other product will be
exactly synchronized.

54

Appendix A – Toolbox

The default flowchart toolbox contains
different flowchart command items grouped
into various sections. The default toolbox
sections match the previous Logicator product
sections. However they may be changed.

You can also build a completely new toolbox
(to display more or less sections) or add or
remove sections to an existing toolbox as
desired.

To add an extra section to the toolbox; click
on the down arrow at the right of the bottom
of the toolbox. Move the mouse over Hide or
Display Sections and a list of the 9 available
sections will be shown.

Using the mouse select an unused section
such as "Section 8" or "Section 9" and it will
be added at the bottom of the toolbox list.

Right-click over the toolbox section added and
you can then edit that section title.

55

To add commands to this section right click
within the main section of the toolbox and
then select the ‘Add New Item’ menu.

To rearrange the order of the commands
simply click and drag them. You can also drag
commands from one section to another.

Once complete you will have a toolbox
section with the desired commands within it.

Finally right click over the toolbox and select
‘Save Toolbox As’ so that it may be used again
in the future.

PICAXE Editor will automatically remember
which toolbox was used last and use that
again next time a new flowchart is created.

Appendix B – Commands

It is also possible to create completely new
specialised flowchart commands (e.g. for a
particular sensor or component) and add
them to the toolbox. This process requires a
knowledge and understanding of PICAXE
BASIC (in order to create the BASIC for the
flowchart conversion process).

All command items are saved as .xml text
files, so the easiest way to create a new
command is generally to find an existing
similar command and then duplicate and edit
it’s parameters as required.

For further detail on this process please
contact PICAXE technical support with your
requirements.

56

Appendix C – Upgrading
What are the main differences between PE6
and ‘Logicator for PICAXE v3’ (LfP)?

Free Software
PE6 is free. There is no charge for use – free
for schools/colleges, free for commerical
companies and free for individuals at home.
PE6 supports both BASIC code and flowcharts.
Naturally all LfP flowchart files open in PE6.

Modern Ribbon Interface
PE6 can use the new modern ribbon interface
or the traditional toolbar interface as desired.

PICAXE Selection
It is now easier to select PICAXE type, COM
port etc. via the Workspace Explorer panel.

Floating/Docking Panels
All panels (e.g. Simulation Panel) can be setup
as docking or floating as required. They no
longer overlay other applications.

Easier Line Drawing
Lines are now drawn by click and drag, which
students find a more intuitive way of drawing.
Blocks of commands can now also be selected
via the new group select tool.

Pin Configuration
All current PICAXE chips (all sizes) can now be
configured – so you can choose which pins are
outputs and which pins are inputs. This is
achieved via double clicking on the first Start
command in the flowchart.

So you are no longer limited to a maximum of
8 inputs or 8 outputs, although you can
naturally choose the same configuration as
PfL for existing project boards.

Up to 8 Parallel Tasks
You can use up to 8 parallel tasks (starts) on
chips that support them.

More Variables (RAM) and EEPROM
PE6 supports more variables and they are
now labelled varA, varB etc. for clarity.
Advanced users may also use word variables if
they choose.

57

More Analogue inputs
LfP was limited to 4 analogue inputs. PE6
supports all ADC that are available in the chip.

Toolbox
The toolbox has been improved to allow end
user configuration (e.g. to hide/show
commands and sections as desired). The icons
are also now smaller to enable more
commands to be displayed at the same time.

Connectors
New flowchart connectors allow lines to be
joint at different locations in the flowchart.

Multiple Flowchart Support
Multiple flowcharts can now be opened at the
same time. This makes it much easier to cut
and paste sections of commands between
flowcharts.

Modern Colour Scheme
The software now defaults to a modern
colour scheme, however the old Logicator
colour scheme is still available if desired (right
click over the flowchart and select Colour
Scheme).

58

Command Edit Dialog
The command edit dialogs have all been
modernised and now include a preview of the
command.

Analogue Sensor Calibration Wizard
Calibration of analogue sensors is now much
simpler, with a detailed graph of the values in
the real time experiment.

Serial Terminal
An advanced Serial Terminal, for use with the
serin/serout commands, is now available.

Trouble Shooting Wizards
Many additional wizards, e.g. testing an
AXE027 download cable, are now included.

59

Improved Simulation
All commands, including generic BASIC cells,
are now fully simulated. New custom
commands can also be added by the end user.

Many PICAXE project kit simulations can now
also be used within the simulation panel (as
well as the default chip shape).

Many of the internal panels e.g. LCD are now
also much more realistic.

Breakpoints
Breakpoints can now be added to any cell, so
that the flowchart simulation can be
automatically paused at that point.

3rd Party Simulators
Simulation links to other 3rd party circuit and
3D model simulators is now also supported
e.g. this is a 3D simulation of the BOT120
PICAXE-20X2 microbot in ‘Webots’. The robot
moves as the flowchart simulated and the two
software applications are fully synchronised.

60

How do I make PE6 look like Logicator?

We expect most people to enjoy using PE6
with the default settings as above (e.g. with
the new ribbon interface and modern colour
scheme). However if you wish to make PE6
look more like LfP:

1) Select ‘Legacy Toolbar’ mode in
File>Options

2) Hide the Workspace Explorer Panel
and drag out the Simulation Panel so
that it is now floating (it can also be
resized as you choose).

3) Right click over the flowchart and
select the Logicator colour scheme

4) Right click over the toolbox and toggle
the toolbox docking side.

PE6 (modified layout) view:

Logicator for PICAXE v3 view:

