
PWM DPWM DPWM DPWM DPWM DRIVERRIVERRIVERRIVERRIVER F F F F FIRMWIRMWIRMWIRMWIRMWAREAREAREAREARE

Order Code
FRM050 PWM Driver Firmware Chip

Contents
1 x PWM Driver (pre-programmed PIC12F629)

1 x data sheet

Introduction
The PWM driver firmware was custom designed for the PICAXE microrobot system (part AXE120). It has now

been made available as a separate item due to customer requests. The firmware operates at 3 to 5.5V DC.

The PWM driver chip sits ‘between’ the controlling PICAXE microcontroller and the L293D motor driver chip,

and provides PWM control of both the L293D motor outputs. Due to the unique design the PWM driver chip

uses the existing 4 wire connection to the L293D, no additional microcontroller output pins are required.

Operation
The 2 motors on a robot buggy can be controlled to make the robot

turn, and the speed of the motor can also be adjusted. The motors

are controlled in this example by PICAXE outputs 4 to 7.

The table shows how to control the direction of the robot.

To move forwards use the command let pins = %10100000
To move backwards use the command let pins = %01010000

The speed of the robot is controlled by a technique called PWM

(pulse width modulation), where the output is rapidly switched on

and off at high frequency. By varying the ‘on’ time to ‘off’ time ratio,

the speed of the micro-robot motors can be varied. The PWM

pulsing function is provided continuously by the 8 pin PWM speed

controller chip fitted to the control board.

The speed of each motor can be adjusted individually, although it is more common to keep both motors

running at roughly the same speed. Speed is adjusted by first setting two pins high, and then using a ‘pulsout’

command, followed by a number between 50 (slow) and 255 (fast). Note that numbers less than 50 will

probably cause the gearbox to stall. See sample program overleaf for an example.

Note that it is normal for DC motors to run at slightly different speeds due to manufacturing tolerances of each

motor - this is NOT a fault, and may cause the robot to veer slightly to one side when moving in a straight line.

It may be possible to set each motor at slightly different speeds to compensate this veer e.g. left motor at speed

50 and right motor at speed 51. Experiment to find the best values for your motors.

On power up the motors default to speed 128. Note that as the PWM speed controller chip takes a few

microseconds to initialise after power-up, each micro-robot PICAXE program should always start with a ‘pause

100’ command to allow the chip to initialise. before speed data is transmitted.

See overleaf for an example typical circuit.

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
FRM050.PMD

��
��������
	
���������������
��������

��
	
�����

	
����������������
	
�����

�

�

�

�

�

�

�

��������	�

7 6 5 4 Direction Control

0 0 0 0 Stop

1 0 1 0 Forward

1 0 0 1 Turn Left

0 1 0 1 Reverse

0 1 1 0 Turn Right

Speed Control

0 Pulse 1 1 Set Speed Left

1 1 0 Pulse Set Speed Right

2

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
FRM050.PMD

PWM DRIVER FIRMWARE

Sample program
This sample program starts the micro-robot forwards at full speed for 3 seconds. It

then reverses for 3 seconds at slow speed, turns and then starts going fowards again.

symbol speedR = b1

symbol speedL = b2

pause 100 ‘ motor controller start-up pause

main:

let speedR = 255 ‘ maximum speed

let speedL = 255 ‘ maximum speed

gosub set_speed ‘ set the speed

let pins = %10100000 ‘ buggy forward

pause 3000 ‘ wait 3 seconds

let pins = %00000000 ‘ stop

let speedL = 60 ‘ set slow speed

let speedR = 60 ‘ set slow speed

gosub set_speed ‘ set the speed

let pins = %01010000 ‘ reverse

pause 3000 ‘ wait 3 seconds

let pins = %10010000 ‘ turn

pause 2000 ‘ wait 2 seconds

goto main ‘ loop

set_speed:

let pins = %00110000 ‘ set left speed

pulsout 6,speedL ‘ send a pulse of length in ‘speedL’

pause 10 ‘ short delay

let pins = %11000000 ‘ set right speed

pulsout 4,speedR ‘ send a pulse of length in ‘speedR’

pause 10 ‘ short delay

return

�

�
�

�

����������������������
��

	

	
�

	
�

	
�

����

����

�����

��

��� !�

�"

#�

��
���
����
����
����

��

�

��

�

��

	
��

�����

��

��

�����

	
��

��

��

	
��

�����

��

��

�����

	
��

��

�

�

��

$

�

#�

%�

&�����
�����&�

'�$�%

���
	&
(
)
*
+���

��
��
��
$

�

�

�

��
��������
	
���������������
��������

��
	
�����

	
����������������
	
�����

�

�

�

�

�

�

�

��������	�

