
PICAXE Manual
www.picaxe.com

revolution

IMPORTANT!
This PDF is designed to be used with the shortcut links (document outline) visible on the left

hand side. Displaying these links makes it much easier to navigate through this manual!

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

2

2

www.picaxe.com

Contents
About this manual .. 4
Software Overview .. 4
Software Comparison .. 5
Software Quick Choice Guide .. 5
Third Party Software ... 5
Technical Support Forum ... 5
Quick Start - Project Board PCB Preparation ... 6
Quick Start - Flashing an LED ... 7
At a glance - specifications: .. 8
At a glance - download circuit: .. 8
At a glance - pinout diagrams (older parts): .. 9
At a glance - pinout diagrams (M2 parts): ... 10
At a glance - pinout diagrams (X2 parts): .. 11
What is a microcontroller? ... 12
Microcontrollers, input and outputs .. 13
What is the PICAXE system? ... 14
Building your own circuit / PCB ... 14
What is a PICAXE microcontroller? .. 15
PICAXE chip labels ... 16
Superseded older PICAXE chips ... 16
Which PICAXE chip? .. 17
Using the PICAXE system. .. 19
PICAXE Starter Packs ... 20
PICAXE Project Boards .. 21
Software Installation .. 22
Installation on RM CC3 networks .. 22
Installing the AXE027 USB cable drivers .. 23
Downloading over a network using TCP/IP ... 24
PICAXE Power Supply .. 25
PICAXE-08M2/08M/08 Pinout and Circuit .. 27
PICAXE-14M2/14M Pinout and Circuit ... 28
PICAXE-20X2/20M2/20M Pinout and Circuit ... 30
PICAXE-18M2/18X/18M/18A/18 Pinout and Circuit .. 32
PICAXE-28X2/28X1/28X/28A Pinout and Circuit ... 34
PICAXE-28X2 Module (AXE200/AXE201) ... 36
PICAXE-28X2 Shield Base (AXE401) ... 38
PICAXE-40X2/40X1/40X Pinout and Circuit .. 40
USB Download Circuit ... 43
Serial Download Circuit (NB: Obsolete, for info only) .. 44
Enhanced Serial Download Circuit (NB: Obsolete, for info only) 45
Download Cables .. 45
Using the Serial In pin as a general input pin .. 46
Reset Circuit .. 47
Resonator ... 47
Testing the System ... 49
Hard-reset procedure .. 50
Download Checklist .. 51
Understanding the PICAXE memory. .. 52
Parallel Task Processing ... 62
Flowchart or BASIC? ... 66
BASIC Simulation ... 67
Interfacing Circuit Summary .. 70
Tutorial 1 – Understanding and using the PICAXE System 71
Input / Output Pin Naming Conventions ... 72
Tutorial 2 - Using Symbols, Comments & White-space ... 75
Tutorial 3 - For…Next Loops ... 76
Tutorial 4 - Making Sounds .. 77
Tutorial 5 – Using Digital Inputs .. 78
Tutorial 6 – Using Analogue Sensors ... 79
Tutorial 7 - Using Debug ... 80
Tutorial 8 - Using Serial Terminal with Sertxd ... 81
Tutorial 9 - Number Systems .. 82
Tutorial 10 - Sub-procedures .. 84
Tutorial 11 - Using Interrupts .. 86

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

3

3

www.picaxe.com

The next step - your own PICAXE project! .. 89
Appendix A – BASIC Commands Summary .. 90
Appendix B – Over-clocking at higher frequencies .. 91
Appendix C – Configuring the obsolete PICAXE-14M I/O Pins 93
Appendix D – Configuring the obsolete 08/08M I/O Pins 95
Appendix E – Configuring the obsolete 28X/28X1 I/O Pins 97
Appendix F – Configuring the obsolete 40X/40X1 I/O Pins 99
Appendix G - Frequently Asked Questions (FAQ). .. 101
Appendix I - Advanced Technical Information and FAQ 105
Software Version .. 110
Contact Address ... 110
Acknowledgements ... 110

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

4

4

www.picaxe.com

About this manual

The PICAXE manual is divided into four separate sections:

Section 1 - Getting Started (picaxe_manual1.pdf)

Section 2 - BASIC Commands (picaxe_manual2.pdf)

Section 3 - Microcontroller interfacing circuits (picaxe_manual3.pdf)

Section 4 - Using Flowcharts (picaxe_manual4.pdf)

This first section provides general information for getting started with the PICAXE

system. No prior understanding of microcontrollers is required. A series of

tutorials introduce the main features of the system.

For more specific information, syntax and examples of each BASIC Command

please see section 2 ‘BASIC Commands’.

For microcontroller interfacing circuits, and example programs, for most

common input/output transducers, please see section 3

Software Overview

Revolution Education Ltd publish 3 software titles for use with the PICAXE

microcontroller chips. Two are free, the other two are low cost options.

PICAXE Editor 6
The PICAXE Editor is the main Windows application used for programming

PICAXE chips. This software is free of charge to PICAXE users.

The PICAXE Editor supports both textual (BASIC) and flowchart (graphical)

methods of developing programs. This manual was prepared using version 6.0.0
of the PICAXE Editor software.

AXEpad
AXEpad is a simpler, free version of the PICAXE Editor software for use on the

Linux and Mac operating systems. It supports the BASIC programming method.

PICAXE VSM
PICAXE VSM is a full Berkeley SPICE circuit simulator, which will simulate

complete electronic circuits using PICAXE chips. The BASIC program can be

stepped through line by line whilst watching the input/output peripheral react to

the program.

This manual focuses on the BASIC textual programming language, as used by PICAXE

Editor, AXEpad and PICAXE VSM.

Please see part 4 of the manual for more details about the flowchart programming

method.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

5

5

www.picaxe.com

Software Comparison

Key:
X = Supported

(X) = Supported, but more suitable product also available,

Software Quick Choice Guide

Windows -> Textual BASIC programming -> PICAXE Editor

-> Flowchart programming -> PICAXE Editor

-> SPICE Circuit Simulation -> PICAXE VSM

Mac -> Textual BASIC programming -> AXEpad

Linux -> Textual BASIC programming -> AXEpad

Third Party Software

Revolution produce royalty free PICAXE drivers that can be used to add PICAXE

support to third party products. Current third party software products include:

Win/Mac/Linux -> Flowchart programming -> Yenka PICs

->Circuit Simulation -> Yenka Electronics

->PCB Artwork -> Yenka PCB

-> Flowchart programming -> Flowol

Technical Support Forum

If you have a question about any aspect of the PICAXE system please post a

question on the very active (and friendly!) support forum at this website

www.picaxeforum.co.uk

PICAXE Editor AXEpad PICAXE VSM

BASIC programming option X X X

Flowchart programming option X

Assembler code output X

Windows Version X (X) X

Linux Version X

Mac OSX Version X

On Screen Simulation X X

Berkeley SPICE Circuit Simulation X

Support of all PICAXE Types X X X

Cost / Distribution Free Free
Cost Option

(£50)

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

6

6

www.picaxe.com

Quick Start - Project Board PCB Preparation

Many Revolution Education project boards, as supplied in the starter packs, are

supplied with a protective ‘peelable’ layer over the user solder pads on the rear of

the PCB. This layer may be red or green in colour and can be easily peeled off

with your finger nail before soldering.

This peelable layer protects the user solderable pads during manufacture and

storage, to keep the pads clean and grease free.

Note also that the solder pads on our PCBs may be a dull white “milky” colour,

not “shiny silver” as in the past. This is due to the more “environmentally

friendly” lead-free chemicals now used for plating RoHS compliant PCBs.

This is not a fault and the pad can still be hand soldered just as easily as the older

style ‘shiny’ solder pads. No cleaning is generally required prior to soldering.

CHIO30 project board, as supplied

in the PICAXE-18 Starter Pack.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

7

7

www.picaxe.com

Quick Start - Flashing an LED

It is strongly recommended that you read the first few chapters of this manual

before using the PICAXE system. However if you cannot wait to get going, this

quick start guide provides a summary of the information explained in much

more detail later in this manual!

1. Install the PICAXE Editor software from www.picaxe.com/software.

2. Insert the AXE027 USB cable into an available USB port (and install the USB

driver when prompted - see the AXE027 datasheet for more details).

3. Start the PICAXE Editor software (click Start>Programs>Revolution

Education>PICAXE Editor). On the Workspace Explorer ‘Settings’ tab select

the correct type of PICAXE chip. Also select the appropriate COM port (the

port created by the AXE027 USB cable).

4. Connect an LED and 330 ohm resistor to the output pin 4 of the PICAXE

chip. On ‘home-made’ or prototype circuits connect the LED/resistor between

the output pin and 0V. On project boards (which have a Darlington transistor

buffered output) connect the LED/resistor between V+ and the output pin.

Ensure correct polarity of the LED.

5. Connect the PICAXE cable to the hardware.

6. Connect the 4.5V (3xAA battery) or 5V regulated power supply to the project

board. Do NOT use a 9V PP3 battery.

7. Using the software, type in the following program:

main: high B.4

pause 1000

low B.4

pause 1000

goto main

8. Click the PICAXE>Program menu to download the program to the hardware.

After the download the output LED should flash on and off very second.

Congratulations! You have now programmed a microcontroller using the PICAXE

system!

��

����

������	�
�	�
�

����

�������	�����
������	�

�������
��

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

8

8

www.picaxe.com

At a glance - specifications:

Power Supply:
4.5V or 5V DC is recommended. Do not use 6V, 7.2V or 9V battery packs, these

could permanently damage the chip. For trouble-shooting use 3xAA cells only.

Earlier 28X2/40X2 parts were also previously available in special low power (1.8V to

3.3V) variants called the 28X2-3V and 40X2-3V. Note that 4.5V or 5V will

permanently damage these special low power parts.

Outputs:
Each output can sink or source 20mA. This is enough to light an LED but will

not, for instance, drive a motor. Total maximum current per chip is 90mA.

Inputs:
An input should be above (0.8 x power supply voltage) to be high, below (0.2 x

power supply voltage) to be low. It is recommended, but not essential, to tie

unused inputs low via a 10k resistor.

ADC:
The ADC range is the power supply voltage range. The maximum recommended

input impedance is 20k. Unconnected ADC will ‘float’ giving varying false

readings. However ‘touch sensor’ pins must float (no pullup/pulldown).

Serial download pin:
The serial download pin must never be left floating. This will give unreliable

operation. Always use the 10k/22k resistors as shown below, even if the chip was

programmed on a different board.

Reset pin:
The reset pin (if present) must never be left floating. This will give unreliable

operation. Always tie high (ie to the positive supply) via a 4k7 or 10k resistor.

At a glance - download circuit:

�
�

�
�

� ������

���
��	���
���
��	
�
�����

 ��

���!�	!
�"

�

�

�

�

�
�

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

9

9

www.picaxe.com

At a glance - pinout diagrams (older parts):

#�����	$
#�����	%
#�����	&
#�����	�	'	(�")	*
#�����	�
#�����	�	'	(�")	+
#�����	 	'	(�")	�
#�����	�

�
��
��	$	'	#��	�$	'	(���
�	'	��	����
��	%	'	#��	�%	'	(������	'	��	���
��	&	'	#��	�&	'	��
	���
��	�	'	#��	��	'	
��	���	'	��
	��

�����
,-�.,	'	�*�	�	'	��	��

�*�	 	'	��	�
�*�	�	'	��	��
�*�	�	'	��	��

/��
��	��
/��
��	#��

��
���������
���������

�
)��	���	'	#��	��	'	��	�
�")	 	'	#��	� 	'	��	

(�")	�	'	�")	�	'	#��	��	'	��	�
��
	���	'	
��	���	'	#��	��	'	��	�

��������	�

�

�

�

&

%

$

0

1

 �

 �

 �

 �

�0

�$

�%

�&

��

��

��

�

��

 1

 0

 $

 %

 &

#�����	$
#�����	%
#�����	&
#�����	�
#�����	�
#�����	�
#�����	
#�����	�

�
��
�����	$	'	��	����
�����	%	'	��	���
�����	&
�����	�
��	�$	'	#��	�$	'	(���
�
��	�%	'	#��	�%	'	(������
��	�&	'	#��	�&	'	��
	���
��	��	'	#��	��	'	
��	���	'	��
	��

�����	�
�����	�

�����
,-�.,	'	�*�	�	'	��	��

�*�	 	'	��	�
�*�	�	'	��	��
�*�	�	'	��	��

/��
��	��
/��
��	#��

�*�	&
�*�	%
�*�	$

�
��

���������
���������

�
)��	���	'	#��	��	'	��	��
�")	 	'	#��	� 	'	��	�
�")	�	'	#��	��	'	��	��

��	���	'	��
	���	'	#��	��	'	��	��
�����	�
�����	

����������

�

�

�

&

%

$

0

1

 �

 �

 �

 �

 &

 %

 $

 0

 1

��

��

�1

�0

�$

�%

�&

��

��

��

�

��

�1

�0

�$

�%

�&

��

��

��

�

�*�	�	'	�����	�
/��
��	#��
/��
��	��
�����

��
#�����	�

��	���	'	#�����	
#�����	�

�")	�	'	#�����	�

�����	 	'	�*�	
�����	�	'	�*�	�	'	��2��
�
�����	$	'	��3�����	����
�����	%	'	��3�����	�����

�
#�����	$
#�����	%
#�����	&
#�����	�	'	
��	���

�

�

�

&

%

$

0

1

 0

 $

 %

 &

 �

 �

 �

 �

�������
	�

��
#�����	�	'	/��
��	#��	'	��2�����
#�����	
#�����	�
#�����	�
#�����	�
#�����	&

�
/��
��	��

�*�	�	'	�����	�
��2��
�	'	�����	�

�����	�
�����	

�*�	�	'	�����	�

�

�

�

&

%

$

 �

 �

 �

 �

1

0

�������
�

��
#��	�	'	/��
��	#��	'	��2�����
��	 	'	#��	 	'	�*�	
��	�	'	#��	�	'	�*�	�	'	�")	�	'	����

�
/��
��	��

�*�	�	'	#��	�	'	��	�
��2��
�	'	��	�

�

�

�

0

$

%

&

��������	

(c) Revolution Education Ltd

www.picaxe.co.uk

��
/��
��	#��
#�����	�	'	��2�����
#�����	
#�����	�
#�����	�
#�����	�
#�����	&
#�����	%
#�����	$

�
/��
��	��

�*�	$	'	�����	$
�����	%
�����	&
�����	�

�*�	�	'	�����	�
�*�	�	'	�����	�
�*�	 	'	�����	
��2��
�	'	�����	�

�

�

�

&

%

$

0

1

 �

��

 1

 0

 $

 %

 &

 �

 �

 �

���������

�*�	�	'	�����	�
/��
��	#��
/��
��	��
�����

��
#�����	�	'	
�2�����

#�����	
#�����	�

#�����	�	'	�")	�

�����	 	'	�*�	
�����	�	'	�*�	�	'	��2��
�
�����	$	'	��3�����	����
�����	%	'	��3�����	�����

�
#�����	$
#�����	%
#�����	&
#�����	�

�

�

�

&

%

$

0

1

 0

 $

 %

 &

 �

 �

 �

 �

�������
	

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

10

10

www.picaxe.com

At a glance - pinout diagrams (M2 parts):

(c) Revolution Education Ltd

www.picaxe.co.uk

��
/��
��	#��	4*��5
+6�	4��	'	#��	'	�*�	'	7���('	/��5
+6 	4��	'	#��	'	�*�	'	7���('	/�8	'	�")5
+6�	4��	'	#��	'	�*�	'	7���(5
+6�	4��	'	#��	'	�*�	'	7���(5
+6�	4��	'	#��	'	�*�	'	7���('	(�")	*5
+6&	4��	'	#��	'	�*�	'	7���('	(
��	���5
+6%	4��	'	#��	'	�*�	'	7���('	(���
�5
+6$	4��	'	#��	'	(
��	���5

�
/��
��	��

47���('	�*�	'	#��	'	��5	�6$
	4��5	�6%

4(�")	�	'	�")	'	#��	'	��5	�6&
4(�")	+	'	#��	'	��5	�6�

4(�")	�	'	�")	'	7���('	�*�	'	#��	'	��5	�6�
4��	���	'	�")	'	7���('	�*�	'	#��	'	��5	�6�

4��	����	'	7���('	�*�	'	#��	'	��5	�6
4(������	'	#��	'	��5	�6�

�

�

�

&

%

$

0

1

 �

��

 1

 0

 $

 %

 &

 �

 �

 �

���������
�

�
4��5	/��
��	��	'	�6&

47���('	�*�	'	#��	'	��5	�6�
4��5	�6�

4��	���	'	(�")	�	'	�")	'	#��	'	��5	�6�
4��	����	'	(�")	+	'	#��	'	��5	�6

4(�")	�	'	�")	'	7���('	�*�	'	#��	'	��5	�6�

��
+6�	'	/��
��	#��	4#��	'	(������	'	*��5
+6 	4��	'	#��	'	�*�	'	7���('	/��	'	(���
�5
+6�	4��	'	#��	'	�*�	'	7���('	�")	'	/�85
+6�	4��	'	#��	'	�*�	'	7���('	(
��	���5
+6�	4��	'	#��	'	�*�	'	7���('	�")	'	(
��	���5
+6&	4��	'	#��	'	�*�	'	7���('	(�")	*5

�������
�
�
 �

 �

 �

 �

1

0

�

�

�

&

%

$

4*��	'	7���('	�*�	'	#��	'	��5	�6�
4/�8	'	#��5	/��
��	#��	'	�6�

4��5	/��
��	��	'	�6�
4��5	�6&

��
4/��	'	#��	'	��5	+6�

4
��	���	'	7���('	�*�	'	#��	'	��5	+6
4(���
�	'	7���('	�*�	'	#��	'	��5	+6�
4�")	'	7���('	�*�	'	#��	'	��5	+6�

�6 	4��	'	#��	'	�*�	'	7���(5
�6�	4��	'	#��	'	�*�	'	7���(5
�6$	4��	'	#��5	9��	����:
�6%	4��	'	#��5	9��	�����:

�
+6$	4��	'	#��	'	�*�	'	7���(5
+6%	4��	'	#��	'	�*�	'	7���('	�")5
+6&	4��	'	#��	'	�*�	'	7���('	(������5
+6�	4��	'	#��	'	�*�	'	7���('	
��	���5

�

�

�

&

%

$

0

1

 0

 $

 %

 &

 �

 �

 �

 �

�������
	
�

��
�6�	'	/��
��	#��	4#��	'	(������	'	*��5
�6 	4��	'	#��	'	�*�	'	7���('	(���
�	'	/��	'	(
��	���5
�6�	4��	'	#��	'	�*�	'	7���('	�")	'		����	'	/�8	'	(
��	���5

�
4��5	/��
��	��	'	�6&

47���('	�*�	'	#��	'	��5	�6�
4��5	�6�

�

�

�

0

$

%

&

��������	
�

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

11

11

www.picaxe.com

At a glance - pinout diagrams (X2 parts):

��
�6�	'	/��
��	#��	4#��5
+6�	4��	'	#��	'	�*� 	'	(
�� 5
+6 	4��	'	#��	'	�*��	'	(
���	'	/�85
+6�	4��	'	#��	'	�*��	'	��)��
5
+6�	4��	'	#��	'	�*�&	'	��)��;5
+6�	4��	'	#��	'	�*�%	'	(�")	*	'	��)� ;5
+6&	4��	'	#��	'	�*� �	'	(
��	���	'	(��
	��
5
+6%	4��	'	#��	'	�*� 	'	(���
�5
+6$	4��	'	#��	'	(
��	���	'	(��
	���5

�
/��
��	��

4�*��	'	#��	'	��5	�6$
4��5	�6%

4(�")	�	'	�")	�6&	'	#��	'	��5	�6&
4(�")	+	'	/�<8	'	#��	'	��5	�6�
4(�")	�	'	�*�$	'	#��	'	��5	�6�

4��	���	'	�*�0	'	#��	'	��5	�6�
4(��
	���	'	��	����	'	�*�1	'	#��	'	��5	�6

4(������	'	#��	'	��5	�6�

�

�

�

&

%

$

0

1

 �

��

 1

 0

 $

 %

 &

 �

 �

 �

�����������

+6$	4��	'	#��5
+6%	4��	'	#��5
+6&	4��	'	#��5	9�*� �	'	����('	�"):
+6�	4��	'	#��	'	�*� 5	9����('	(�")	*:
+6�	4��	'	#��	'	�*�15 	9����(:
+6�	4��	'	#��	'	�*�0	'	(
���5	9����('	(�")	+:
+6 	4��	'	#��	'	�*� �	'	(
�� 5	9����('	(�")	�:
+6�	4��	'	#��	'	�*� �	'	(
���5	9����('	�")	'	/��:

�
��
�6$	4��	'	#��	'	(���
�	'	��	����5	9�*� 1	'	����(:
�6%	4��	'	#��	'	(������	'	��	���5	9�*� 0	'	����(:
�6&	4��	'	#��	'	(��
	���5	9�*� $	'	����(:
�6�	4��	'	#��	'	(
��	���	'	(��
	��
5	9�*� %	'	����(:

�����
9����(:	4��)� ;	'	�*��	'	#��	'	��5	�6�
9����(:	4��)��;	'	�*� 	'	#��	'	��5	�6

9*��	'	����(:	4��)��
	'	�*��	'	#��	'	��5	�6�
9����(:	4��)�
	'	�*��	'	#��	'	��5	�6�

/��
��	��
9/�<8:	4#��5	/��
��	#��	'	�6�

��
���������
���������

4�
)��	���	'	#��	'	��5	�6�
4�")	'	#��	'	��5	�6

9(�")	�	'	����('	�*� �:	4�")	'	#��	'	��5	�6�
9����('	�*��:	4(
��	���	'	(��
	���	'	#��	'	��5	�6�

��������	��

�

�

�

&

%

$

0

1

 �

 �

 �

 �

�0

�$

�%

�&

��

��

��

�

��

 1

 0

 $

 %

 &

+6$	4��	'	#��5
+6%	4��	'	#��5
+6&	4��	'	#��5	9�*� �	'	����(:
+6�	4��	'	#��	'	�*� 5	9����(:
+6�	4��	'	#��	'	�*�15	9����(:
+6�	4��	'	#��	'	�*�0	'	(
���5	9����(:
+6 	4��	'	#��	'	�*� �	'	(
�� 5	9����(:
+6�	4��	'	#��	'	�*� �	'	(
���5	9����('	/��:

�
��
*6$	4��	'	#��	'	(�")	*	'	��	����5	9�*��$	'	����(:
6%	4��	'	#��	'	(�")	�	'	��	���5	9���%	'	����(:
6&	4��	'	#��	'	(�")	+5	9���&	'	����(:
6�	4��	'	#��5	9����	'	����(:
�6$	4��	'	#��	'	(���
�5	9�*� 1	'	����(:
�6%	4��	'	#��	'	(������5	9�*� 0	'	����(:
�6&	4��	'	#��	'	(��
	���5	9�*� $	'	����(:
�6�	4��	'	#��	'	(
��	���	'	(��
	��
5	9�*� %	'	����(:
6�	4��	'	#��5	9����	'	����(:
6�	4��	'	#��5	9����	'	����(:

�����
9����(:	4��)� ;	'	�*��	'	#��	'	��5	�6�
9����(:	4��)��;	'	�*� 	'	#��	'	��5	�6

9*��	'	����(:	4��)��
	'	�*��	'	#��	'	��5	�6�
9����(:	4��)�
	'	�*��	'	#��	'	��5	�6�

/��
��	��
9/�<8:	4#��5	/��
��	#��	'	�6�
9����(:	4�*�&	'	#��	'	��5	�6&
9����(:	4�*�%	'	#��	'	��5	�6%
9����(:	4�*�$	'	#��	'	��5	�6$

�
��

���������
���������

4�
)��	���	'	#��	'	��5	�6�
4�")	'	#��	'	��5	�6

9����('	�*� �:	4(�")	�	'	�")	'	#��	'	��5	�6�
9����('	�*��:	4(
��	���	'	(��
	���	'	#��	'	��5	�6�

	9����('	�*���:	4#��	'	��5	*6�
	9����('	�*�� :	4#��	'	��5	*6

�����������

�

�

�

&

%

$

0

1

 �

 �

 �

 �

 &

 %

 $

 0

 1

��

��

�1

�0

�$

�%

�&

��

��

��

�

��

�1

�0

�$

�%

�&

��

��

��

�

Features shown in brackets { } are not

available in older -5V and -3V variants.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

12

12

www.picaxe.com

What is a microcontroller?

A microcontroller is often described as

a ‘computer-on-a-chip’.

It is a low-cost integrated circuit that

contains memory, processing units,

and input/output circuitry in a single

unit. Microcontrollers are purchased

‘blank’ and then programmed with a

specific control program.

Once programmed the microcontroller is build into a product to make the

product more intelligent and easier to use.

As an example, a microwave oven may use a single

microcontroller to process information from the

keypad, display user information on the seven

segment display, and control the output devices

(turntable motor, light, bell and magnetron).

One microcontroller can often replace a number of

separate parts, or even a complete electronic circuit.

Some of the advantages of using microcontrollers in a product design are:

• increased reliability through a smaller part count

• reduced stock levels, as one microcontroller replaces several parts

• simplified product assembly and smaller end products

• greater product flexibility and adaptability since features are programmed into

the microcontroller and not built into the electronic hardware

• rapid product changes or development by changing the program and not the

electronic hardware

Applications that use microcontrollers include household appliances, alarm

systems, medical equipment, vehicle subsystems, and electronic instrumentation.

Some modern cars contain over thirty microcontrollers - used in a range of

subsystems from engine management to remote locking!

In industry microcontrollers are usually programmed using the assembler or ‘C’

programming languages. However the complexity of these languages means that

it is often not realistic for younger students in education, or many home

hobbyists without formal training, to use these programming methods.

The PICAXE system overcomes this problem by use of a much simpler, easy to

learn, BASIC programming language. Programs can also be created graphically by

use of the flowchart editor.

��������	
����

�
�
�
�
�

�
�
�
	
�

=,--
>�?>

@�*

*�=
�-���

�##A

7�@�

/�7

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

13

13

www.picaxe.com

Microcontrollers, input and outputs

A popular children’s electronic toy is shown in the

diagram. This is a good example of a mechatronic

system, as it uses an electronic circuit to control a

number of mechanisms. It also contains a number of

sensors so that it can react to changes when it is

moved (for example being put in a dark place or

being turned upside down).

Input transducers are electronic devices that detect

changes in the ‘real world’ and send signals into the

process block of the electronic system.

Some of the input transducers for the electronic toy are:

• push switches on the front and back to detect when the toy is being ‘stroked’,

and a switch in the mouth to detect when the toy is being ‘fed’

• a light-dependent resistor (LDR) between the eyes to detect if it is light or

dark

• a microphone to detect noises and speech

• a tilt switch to detect when the toy is being turned upside down

• an infrared detector to detect infrared signals from other toys

Output transducers are electronic devices that can be switched on and off by the

process block of the electronic system. Some of the output transducers of the

electronic toy are:

• a motor to make the eyes and mouth move

• a speaker to produce sounds

• an infrared LED (light-emitting diode) to send signals to other toys.

The microcontroller uses information from the input transducers to make

decisions about how to control the output devices. These decisions are made by

the control program, which is downloaded into the microcontroller. To change

the ‘behaviour’ of the toy it is simply a process of changing and downloading a

new program into the microcontroller

�������

��	��
���
�����
�����

����

��������������

������������

�����������

�����
���������

��������

��	��
���
��������

���������

����� ����	

 ������

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

14

14

www.picaxe.com

What is the PICAXE system?

The PICAXE system exploits the unique characteristics of the

new generation of low-cost ‘FLASH’ memory based

microcontrollers. These microcontrollers can be programmed

over and over again (typically 100 000 times) without the need

for an expensive programmer.

The PICAXE uses a simple BASIC language (or graphical flowcharts) that younger

students can start generating programs with within an hour of first use. It is much

easier to learn and debug than industrial programming languages (C or assembler

code).

Unlike other BASIC ‘module’ based systems, all PICAXE programming is at the

‘chip’ level. Therefore instead of buying an expensive pre-assembled (and difficult

to repair) surface mount module, with the PICAXE system you simply purchase a

standard chip and use it directly in your project board.

The power of the PICAXE system is its simplicity. No programmer, eraser or

complicated electronic system is required - the microcontroller is programmed

via a 3-wire connection to the computers serial port. The operational PICAXE

circuit uses from just 3 components and can be easily constructed on a

prototyping breadboard, strip-board or PCB design.

The ‘PICAXE Editor’ software is free and so the only cost per computer is the low-

cost download cable. In the educational environment this enables students to

buy their own cable and for schools to equip every single computer with a

download cable. Other systems that require an expensive programmer or

‘module’ are generally too expensive to implement in this way.

Finally as the PICAXE chip never leaves the project board, all leg damage (as can

occur when the chip is moved back and forth from a programmer) is eliminated.

Building your own circuit / PCB

The PICAXE system has been designed to allow students / hobbyists to build their

own PCB circuits for the PICAXE system. However if you do not wish to make

your own circuit a number of project board kits and PCBs are available - please

see the current PICAXE catalogue for more details.

If you wish to make your own PCB some reference designs are available at the

PCB section of the PICAXE website at www.picaxe.co.uk

PCB samples are available for educational use in the popular realPCB and PCB

Wizard formats.

If you wish to ‘bread-board’ a prototype

circuit the AXE091 Development kit is highly

recommended.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

15

15

www.picaxe.com

What is a PICAXE microcontroller?

A PICAXE microcontroller is a standard Microchip PICmicro™ microcontroller

that has been pre-programmed with the PICAXE bootstrap code. The bootstrap

code enables the PICAXE microcontroller to be re-programmed directly via a

simple serial connection. This eliminates the need for an (expensive)

conventional programmer, making the whole download system a very low-cost

simple serial cable!

The pre-programmed bootstrap code also contains common routines (such as

how to generate a pause delay or a sound output), so that each download does

not have to waste time downloading this commonly required data. This makes

the download time much quicker.

As the blank microcontrollers purchased to ‘make’ PICAXE microcontrollers are

purchased in large volumes, it is possible for the manufacturer to program the

bootstrap code and still sell the PICAXE microcontroller at prices close to

standard catalogue process for single un-programmed PIC microcontrollers. This

means the cost of the PICAXE microcontroller to the end user is very economical.

The PICAXE bootstrap code is not available for programming into blank

microcontrollers. You must purchase PICAXE microcontrollers (rather than

blank, un-programmed microcontrollers) for use in the PICAXE system.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

16

16

www.picaxe.com

PICAXE chip labels

PICAXE chips are pre-programmed and tested Microchip PICmicro™

microcontrollers.

More recent M2 parts are custom parts ‘factory engraved’ with the full PICAXE

name. Other parts are simply ‘engraved’ with the Microchip part name.

PICAXE Type Engraving on top of chip

• PICAXE-08M2 PICAXE-08M2+

• PICAXE-14M2 PICAXE-14M2

• PICAXE-18M2 PICAXE-18M2+

• PICAXE-20M2 PICAXE-20M2

• PICAXE-20X2 PIC18F14K22

• PICAXE-28X2 PIC18F25K22

• PICAXE-40X2 PIC18F45K22

Still manufactured, but not recommended for new designs:

• PICAXE-28X1 PIC16F886

• PICAXE-40X1 PIC16F887

Superseded older PICAXE chips

PICAXE Type Engraving Replacement Type

• PICAXE-08 PIC12F629 Superseded by 08M2

• PICAXE-08M PIC12F683 Superseded by 08M2

• PICAXE-08M2LE 08M2 Superseded by 08M2

• PICAXE-14M PIC16F684 Superseded by 14M2

• PICAXE-18 PIC16F627(A) Superseded by 18M2

• PICAXE-18A PIC16F819 Superseded by 18M2

• PICAXE-18M PIC16F819 Superseded by 18M2

• PICAXE-18X PIC16F88 Superseded by 18M2

• PICAXE-20M PIC16F677 Superseded by 20M2

• PICAXE-28A PIC16F872 Superseded by 28X1

• PICAXE-28X PIC16F873A Superseded by 28X1

• PICAXE-28X2-5V PIC18F2520 Superseded by 28X2

• PICAXE-28X2-3V PIC18F25K20 Superseded by 28X2

• PICAXE-40X PIC16F874A Superseded by 40X1

• PICAXE-40X2-5V PIC18F4520 Superseded by 40X2

• PICAXE-40X2-3V PIC18F45K20 Superseded by 40X2

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

17

17

www.picaxe.com

Which PICAXE chip?

The PICAXE system can be used with different physical

sizes of PICAXE chip (8, 14, 18, 20, 28 and 40 pin). The

primary difference between the sizes of chips is the

number of input/output pins available – the larger chips

cost a bit more but have more available input/output pins.

The same BASIC language is common to all size chips.

Within a chip size there are also different variants (e.g. for the 20 pin PICAXE the

20M2 and 20X2 variants are available). The principal difference between the

variants is the amount of memory (ie how long a program can be downloaded

into the chip). The higher specification variants also have some increased

functionality (e.g. high resolution analogue inputs and i2c compatibility, as

described in the next section). Any project can be upgraded to the next level

variant at any point (e.g. if your program is too long for the variant of chip used)

by simply replacing the microcontroller in your circuit with the upgraded variant.

All upgraded variants are pin and program compatible with the lower

specification device.

The recommended part for new designs is:

Standard:

08 PICAXE-08M2

14 PICAXE-14M2

18 PICAXE-18M2

20 PICAXE-20M2

Advanced:

20 PICAXE-20X2

28 PICAXE-28X2

40 PICAXE-40X2

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

18

18

www.picaxe.com

The following table shows the primary functional differences between the

available PICAXE microcontrollers.

For general ‘hobbyist’ the M2 and X2 series are recommended.

Standard: (800 - 1800 line memory, per each of (up to) 2 separate slots)

08M2 5 configurable i/o 0-3 ADC 32MHz

14M2 11 configurable i/o 0-7 ADC 32MHz

18M2 16 configurable i/o 0-10 ADC 32MHz

20M2 16 configurable i/o 0-11 ADC 32MHz

28X1 0-12 inputs, 9-17 outputs 0-4 ADC 20MHz

40X1 8-20 inputs, 9-17 outputs 3-7 ADC 20MHZ

Advanced: (2000 - 3200 line memory, per each of (up to) 4 separate slots)

20X2 18 configurable i/o 0-8 ADC 64MHz

28X2 22 configurable i/o 0-16 ADC 64MHz

40X2 33 configurable i/o 0-27 ADC 64MHZ

All parts default to operation at 4MHz (8MHz for X2 parts). For use at higher

speeds please see the ‘setfreq’ command in part 2 of the manual.

The older 08, 14, 18 and 20 pin ‘A’, ‘M’ and ‘X’ parts are no longer manufactured as

they have now been superseded by the M2 parts.

The older 28 and 40 pin ‘A’ and ‘X’ parts are no longer manufactured as they have now

been superseded by the X1 and X2 parts.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

19

19

www.picaxe.com

Using the PICAXE system.

To use the PICAXE system you will require:

• A PICAXE microcontroller

• A PICAXE circuit board

• A power supply (e.g. 4 rechargeable AA

cells (4.8V) or 3 alkaline AA cells (4.5V))

• A download cable (USB or serial)

• The free ‘PICAXE Editor’ software or

‘AXEpad’ software.

All these items are included within all the PICAXE ‘starter’ packs.

To run the PICAXE Editor software you require a computer running Windows XP,

Vista, 7, 8 or later

To run the AXEpad software you require a PC with a x386 Linux distribution or

Mac with OSX (10.2 or later).

The computer also requires a USB port for the AXE027 USB cable.

See the USB/Serial Port setup section for more details.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

20

20

www.picaxe.com

PICAXE Starter Packs

To get started with the PICAXE system a starter pack is recommended. All 5 starter

packs contain a USB download cable and battery box. However the project board

and type of PICAXE chip varies in each starter pack as indicated below.

3 x AA batteries are also required (not included).

PICAXE-08 Starter Pack (AXE003U)
PICAXE-08 proto board, PICAXE chip,

CDROM, USB download cable and

battery box. Self assembly kit.

PICAXE-14 Starter Pack (AXE004U)
PICAXE-20 Starter Pack (AXE005U)
PICAXE-14 project board, PICAXE chip,

CDROM, USB download cable and

battery box. Self assembly kit.

PICAXE-18 Starter Pack (AXE002U)
PICAXE-18 standard project board,

PICAXE-18M2 chip, CDROM, USB

download cable and battery box. Pre-

assembled (18M2 chip supplied).

PICAXE-28X1 Starter Pack (AXE001U)
PICAXE-28 project board, connector

cables, PICAXE-28X1 chip, CDROM,

USB download cable and battery box.

Pre-assembled (28X1 chip supplied).

Development Starter Pack (AXE091U)
Specifically designed for hobbyists with

large breadboarding area and inputs/

outputs for experimentation.

The development PCB can support all

sizes of PICAXE chips and is supplied

with a PICAXE-18M2 chip. Pre-

assembled.

Tutorial Starter Pack (AXE050U)
The tutorial pack is designed for school

use to enable students to rapidly learn

the PICAXE language by a series of

structured tutorials (provided on the

CDROM). Pre-assembled board with

LDR, switches and output display.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

21

21

www.picaxe.com

PICAXE Project Boards

Individual project boards/kits are also available for users who do not wish to

manufacture their own pcb. All boards have the serial download connector for

programming the PICAXE chip via the serial / USB download cable.

PICAXE-08 Proto Board (AXE021)
Small self-assembly board to allow rapid prototyping of

PICAXE-08 circuits. The board provides the basic circuit and

download connector, with a small prototyping area to allow

connection of input and output circuits.

PICAXE-08 Motor Driver (AXE023)
The motor driver board can be used to drive 4 individual on/

off outputs (e.g. buzzers), or the outputs can be used in pairs

to allow forward-reverse-stop control of two motors. Pre-

assembled with PICAXE-08 chip included.

PICAXE-14 Project Board (AXE117)
PICAXE-20 Project Board (AXE118)
The project board PCB is a professional quality PCB that

enables students to construct a project board that has 6

outputs and 5 inputs. The board provides space for the

PICAXE-14M2/20M2 chip, download socket and darlington

driver. Self assembly kit (including PCB).

PICAXE-18 Project Board (CHI030A)
The PICAXE-18 standard interface board is a pre-assembled

board fitted with a darlington driver chip so that output

devices such as motors and buzzers can be connected directly

to the board. Supports 5 inputs and 8 outputs.

PICAXE-18 High Power Project Board (CHI035A)
The pre-assembled high power interface board provides 4

FET drivers to drive high current output devices. By addition

of the optional L293D motor driver chip, an additional 2

motor control outputs can be added.

PICAXE-28 Project Board (AXE020)
A pre-assembled board fitted with a darlington driver chip

for 8 output devices. By addition of the optional motor

driver chip, an additional 2 motor control outputs can be

added to the board. Supplied with connector ribbon cables.

PICAXE-28/40 Proto Board (AXE022P)
The PICAXE-28/40 proto board kit allows rapid

development of PICAXE-28X1/X2 and 40X1/X2 projects. The

board provides the basic circuit and download connector,

with connections for inputs & outputs. EEPROM socket

included.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

22

22

www.picaxe.com

Software Installation

Computer Requirements:
To install the software you require a computer running Windows XP or later with

approximately 50MB free space.

Installation:
1) Start up and log into your computer (some operating systems require that you

log in as ‘Administrator’ to install software).

2) Run the installation file downloaded from the software page at

www.picaxe.com/software

3) Follow the on-screen instructions to install the software. On older computers

you may be instructed to restart the computer after installation.

4) Insert the AXE027 USB cable into the USB port. The AXE027 will require a

software driver when first used, a ‘New hardware found’ wizard will

automatically start (see the AXE027 datasheet for more details).

5) Click Start>Programs>Revolution Education>PICAXE Editor to start the

software.

6) On the Workspace Explorer ‘Settings’ tab select the size and type of PICAXE

microcontroller you are using. Also select the appropriate COM port then

click OK.

You are now ready to use the system.

Installation on RM CC3 networks

The software will run on all school networks, including RM CC3.

1) It is recommended you use the uncompressed MSI install provided on the

CDROM, rather than the internet download.

2) Log on as System Admin and use your preferred distribution software (e.g. RM

Application Wizard) to build a distribution package using the MSI install

found within the /progedit folder on the CDROM. If preferred you can also

manually copy the MSI files into the RMPackages\Applications area.

3) Update the package list of the appropriate workstations using the RM

Management Console and generate shortcuts as required.

4) XP users - note that you may have to create two Software Restrictions ‘hash’

rules - one to the progedit.exe executable and another to the shortcut. To do

this log on as System Admin on an XP workstation, click

Start>Programs>System Management>Software Restriction settings. Open

Computer Configuration>Windows Settings>Software Restriction

Policies>Additional Rules. From the Action menu select ‘New Hash Rule’ and

browse to the progedit.exe executable. Click OK.

5) The default save/open folder paths can be edited as required in the file called

network.ini found in the main installation folder.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

23

23

www.picaxe.com

Installing the AXE027 USB cable drivers

Older desktop computers had a 9 pin serial connector for connection of the

PICAXE download cable. However most modern laptop computers do not have a

9 pin serial connector to save space, in this case the USB port must be used

instead.

The USB interface system is an intelligent system that requires the connected

device to automatically configure itself when connected to the computers USB

port. Although it is theoretically possible to build a USB version of the PICAXE,

the extra memory required would increase the cost of every single PICAXE chip by

almost £3 ($5).

Therefore an alternate system is used. The user purchases a one-off low-cost ‘USB

to serial’ cable (part AXE027), which is a special intelligent PICAXE cable that

allows chips to be programmed via the USB port.

USB Cable Installation procedure:

(Please see the USB Cable (AXE027.pdf) help file for more detailed instructions.

This is available on the software page at www.picaxe.com/axe027)

1) Purchase the AXE027 USB cable.

2) Connect to the USB port of the computer

3) Insert the CDROM supplied with the USB adapter to install the latest driver

4) Note the serial port COM number allocated to the USB adapter.

5) Connect the standard PICAXE cable to the USB adapter.

6) Start up the PICAXE Editor software and select the appropriate COM port

from the Workspace Explorer Settings tab.

7) Click ‘Refresh’ to refresh the available port list.

8) Use the software and hardware as normal.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

24

24

www.picaxe.com

Downloading over a network using TCP/IP

The PICAXE Editor software supports COM port redirection over a TCP/IP

“ethernet” connection. This connection can be a local network or even the

internet.

To use this feature a ‘virtual’

COM port is created on the

local computer (the computer

that is running the PICAXE

Editor software) and creates a

TCP/IP connection. At the

remote computer (where the

download cable is connected to

the USB/serial port) a small

redirection service application

is installed and then redirects

the real COM port to the TCP/

IP connection.

This system allows the PICAXE

Editor software to use the serial

port on the remote computer

exactly as if it was on the local

computer - new program

downloads and even serial data

can be transmitted seamlessly

back and forward over the TCP/

IP connection.

To setup this connection two steps are required:

1) Run the wizard (PICAXE>Wizards>COM to TCP/IP menu) on the local

computer to setup the local connection.

2) Install the SEC software on the remote computer and run it’s Wizard to select

the serial port to be used. This software runs as a service and so can be configured

to always start when the computer is powered up. This allows it to be installed on

unattended machines (e.g. in a museum).

For further details please see the Serial Ethernet Connection software datasheet.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

25

25

www.picaxe.com

PICAXE Power Supply

All PICAXE chips will run programs at voltages between 3 and 5.5V DC.

The later generation parts (M2 and X2 parts) will also run down to 1.9V.

IMPORTANT NOTE - this manual describes use of the standard range (3-5.5V) parts.

The older 28X2 and 40X2 parts were also optionally available in special low power

(1.8V to 3.3V) variants. Use of a 5V supply on a 3.3V part will permanently damage it!

It is recommended that the power supply is provided in one of the 3 following

ways:

• 3 x AA alkaline AA cells (4.5V)

• 4 x rechargeable AA cells (4.8V)

• 5V regulated from a 9V DC regulated supply (5V)

Do not use a 9V PP3 battery, this is above the maximum rating of the PICAXE

chip and will cause permanent damage. Note that most 3xAA and 4xAA battery

boxes use the same ‘press-stud’ style connector and battery snap/clip as a PP3 9V

battery. Note the provision of this style of clip does not mean that a project board

should use a PP3 9V battery, it is just unfortunate that all battery boxes use the

same style connector.

PP3 9V batteries are designed for very low-current, long term applications (e.g. a

smoke alarm or multi-meter). Although a PP3 9V supply regulated to 5V will

work for short periods with a microcontroller, it will drain very quickly when an

output device (e.g. LED, motor or buzzer) is connected. Therefore always use AAA

or AA battery packs rather than 9V PP3 batteries in microcontroller projects (as

used with many portable consumer goods e.g. CD players, LED torches etc.) Take

care when inserting PICAXE chips into your circuit to ensure they are the correct

way around. Take extra care with 18 pin chips, as if inserted ‘upside-down’ the

power supply connections will be reversed causing permanent damage to the

chip.

AA Battery Packs
Alkaline AA cells have a nominal voltage of 1.5V, so 3 cells will give 4.5V. If you

wish to use 4 cells, also use a 1N4001 diode in series with the battery pack. The

diode provides voltage polarity protection, and as the diode has a 0.7V drop the

microcontroller voltage will be an acceptable 5.3V (6V-0.7V).

Rechargeable AA cells have a nominal voltage of 1.2V, so 4 cells will give 4.8V.

Take care not to short circuit any battery pack, as the large short circuit current

may cause considerable heat damage or start a fire.

Using battery snaps.
Battery packs are often connected to electronic printed circuit boards by battery

snaps. Always ensure you connect the red and black wires the correct

way around. It is also useful to thread the battery snap through holes

on the board before soldering it in place - this provides a much

stronger joint that is less likely to snap off.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

26

26

www.picaxe.com

Regulated Power Supply.
Some users may wish to use a ‘wall adapter’ style power supply (e.g. part

PWR009). It is essential that a good quality regulated 9V DC device is used with a

5V regulator. Unregulated devices may give excessive voltages (under low load

conditions) that will damage the microcontroller. Old computer 12V/5V supplies

are not suitable for PICAXE microcontroller work.

The 9V DC supply must be regulated to 5V using a voltage regulator (e.g. 7805

(1A capability) or 78L05 (100mA capability)). The full regulation circuit is shown

below. The 1N4001 diode provides reverse connection protection, and the

capacitors help stabilise the 5V supply. Note that voltage regulators do not

generally function correctly unless the input supply in this circuit is

approximately 8V or higher. The capacitors shown are also essential.

Never try to use a 9V PP3 battery with this circuit. The PP3 battery has insufficient

current capability and is not recommended for any PICAXE project work.

IMPORTANT NOTE - this manual describes use of the standard range (3-5V) parts.

The older X2 parts were also optionally available in special low power (1.8V to 3.3V)

variants. Use of a 5V supply on a 3.3V part will permanently damage it!

&�

#��

��

 ��� ���

 <���
$04-5�&
��B������

 ��� ���

C0�

��

��

����
��

������

����
��
������

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

27

27

www.picaxe.com

PICAXE-08M2/08M/08 Pinout and Circuit

The pinout diagrams for the 8 pin devices are as follows:

(0.3” DIL or 150mil SOIC)

The minimum operating circuit for the 8 pin devices is:

See the Serial Download Circuit section of this manual for more details about the

download circuit.

Notes:
1) The 10k/22k resistors must be included for reliable operation.

 DO NOT leave the serial in pin floating as THE PROGRAM WILL NOT RUN!

2) Output pin 0 (leg 7) is used during the program download, but can also be

used as a general purpose output once the download is complete. On the

project boards a jumper link allows the microcontroller leg to either be

connected to the download socket (PROG position) or to the output (OUT

position). Remember to move the jumper into the correct position when

testing your program!

If you are making your own pcb you can include a similar jumper link or small

switch, or you may prefer to connect the microcontroller leg to both the output

device and the program socket at the same time. In this case you must remember

that your output device will rapidly switch on and off as the download takes

place (not a problem with simple outputs like LEDs, but could cause problems

with other devices such as motors).

��
#�����	�	'	/��
��	#��
��	 	'	#��	 	'	�*�	
��	�	'	#��	�

�
/��
��	��

#��	�	'	��	�
��	�

�

�

�

0

$

%

&

��������	
��
#��	�	'	/��
��	#��	'	��2�����
��	 	'	#��	 	'	�*�	
��	�	'	#��	�	'	�*�	�	'	�")	�	'	����

�
/��
��	��

�*�	�	'	#��	�	'	��	�
��2��
�	'	��	�

�

�

�

0

$

%

&

��������	

�0

�

�

�

&�

��

���
��	���

���

 ��

�
�

0

$

%

&

�6�

�6�

�6�

�6

�6	�

���
��	
�

 ���=

��
�6�	'	/��
��	#��	4#��	'	(������	'	*��5
�6 	4��	'	#��	'	�*�	'	7���('	(���
�	'	/��	'	(
��	���5
�6�	4��	'	#��	'	�*�	'	7���('	�")	'		����	'	/�8	'	(
��	���5

�
4��5	/��
��	��	'	�6&

47���('	�*�	'	#��	'	��5	�6�
4��5	�6�

�

�

�

0

$

%

&

��������	
�

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

28

28

www.picaxe.com

��
#�����	�	'	/��
��	#��	'	��2�����
#�����	
#�����	�
#�����	�
#�����	�
#�����	&

�
/��
��	��

�*�	�	'	�����	�
��2��
�	'	�����	�

�����	�
�����	

�*�	�	'	�����	�

�

�

�

&

%

$

 �

 �

 �

 �

1

0

�������
�

PICAXE-14M2/14M Pinout and Circuit

The pinout diagrams for the 14 pin devices are as follows:

(0.3” DIL or 150mil SOIC)

Please see appendix C for information on how the 14M i/o pins can be reconfigured

by advanced users.

The minimum operating circuit for the 14 pin devices is:

 �

�

�

�

&

%

$

&�

��

���
��	���

���

 ��

�
�

 �

 �

 �

 �

1

0

�6�

�6�

�6�

�6

�6�

+6�

+6

+6�

+6�

+6�

+6&

���
��	
�

 ���=

�
4��5	/��
��	��	'	�6&

47���('	�*�	'	#��	'	��5	�6�
4��5	�6�

4��	���	'	(�")	�	'	�")	'	#��	'	��5	�6�
4��	����	'	(�")	+	'	#��	'	��5	�6

4(�")	�	'	�")	'	7���('	�*�	'	#��	'	��5	�6�

��
+6�	'	/��
��	#��	4#��	'	(������	'	*��5
+6 	4��	'	#��	'	�*�	'	7���('	/��	'	(���
�5
+6�	4��	'	#��	'	�*�	'	7���('	�")	'	/�85
+6�	4��	'	#��	'	�*�	'	7���('	(
��	���5
+6�	4��	'	#��	'	�*�	'	7���('	�")	'	(
��	���5
+6&	4��	'	#��	'	�*�	'	7���('	(�")	*5

�������
�
�
 �

 �

 �

 �

1

0

�

�

�

&

%

$

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

29

29

www.picaxe.com

See the USB / Serial Download Circuit section of this manual for more details

about the download circuit.

Notes:
1) The 10k/22k resistors must be included for reliable operation.

 DO NOT leave the serial in pin floating as THE PROGRAM WILL NOT RUN!

2) Output pin 0 (leg 13) is used during the program download, but can also be

used as a general purpose output once the download is complete. On the

project boards a jumper link allows the microcontroller leg to either be

connected to the download socket (PROG position) or to the output (OUT

position). Remember to move the jumper into the correct position when

testing your program!

If you are making your own pcb you can include a similar jumper link or small

switch, or you may prefer to connect the microcontroller leg to both the output

device and the program socket at the same time. In this case you must remember

that your output device will rapidly switch on and off as the download takes

place (not a problem with simple outputs like LEDs, but could cause problems

with other devices such as motors).

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

30

30

www.picaxe.com

PICAXE-20X2/20M2/20M Pinout and Circuit

The pinout diagrams for the 20 pin devices are as follows:

(0.3” DIL or 300mil SOIC)

��
/��
��	#��
#�����	�	'	��2�����
#�����	
#�����	�
#�����	�
#�����	�
#�����	&
#�����	%
#�����	$

�
/��
��	��

�*�	$	'	�����	$
�����	%
�����	&
�����	�

�*�	�	'	�����	�
�*�	�	'	�����	�
�*�	 	'	�����	
��2��
�	'	�����	�

�

�

�

&

%

$

0

1

 �

��

 1

 0

 $

 %

 &

 �

 �

 �

���������

Note pin C.6 is input only on the 20M2 and 20X2 parts. This is due to the

internal silicon design of the chip and cannot be altered.

��
/��
��	#��	4*��5
+6�	4��	'	#��	'	�*�	'	7���('	/��5
+6 	4��	'	#��	'	�*�	'	7���('	/�8	'	�")5
+6�	4��	'	#��	'	�*�	'	7���(5
+6�	4��	'	#��	'	�*�	'	7���(5
+6�	4��	'	#��	'	�*�	'	7���('	(�")	*5
+6&	4��	'	#��	'	�*�	'	7���('	(
��	���5
+6%	4��	'	#��	'	�*�	'	7���('	(���
�5
+6$	4��	'	#��	'	(
��	���5

�
/��
��	��

47���('	�*�	'	#��	'	��5	�6$
	4��5	�6%

4(�")	�	'	�")	'	#��	'	��5	�6&
4(�")	+	'	#��	'	��5	�6�

4(�")	�	'	�")	'	7���('	�*�	'	#��	'	��5	�6�
4��	���	'	�")	'	7���('	�*�	'	#��	'	��5	�6�

4��	����	'	7���('	�*�	'	#��	'	��5	�6
4(������	'	#��	'	��5	�6�

�

�

�

&

%

$

0

1

 �

��

 1

 0

 $

 %

 &

 �

 �

 �

���������
�

��
�6�	'	/��
��	#��	4#��5
+6�	4��	'	#��	'	�*� 	'	(
�� 5
+6 	4��	'	#��	'	�*��	'	(
���	'	/�85
+6�	4��	'	#��	'	�*��	'	��)��
5
+6�	4��	'	#��	'	�*�&	'	��)��;5
+6�	4��	'	#��	'	�*�%	'	(�")	*	'	��)� ;5
+6&	4��	'	#��	'	�*� �	'	(
��	���	'	(��
	��
5
+6%	4��	'	#��	'	�*� 	'	(���
�5
+6$	4��	'	#��	'	(
��	���	'	(��
	���5

�
/��
��	��

4�*��	'	#��	'	��5	�6$
4��5	�6%

4(�")	�	'	�")	�6&	'	#��	'	��5	�6&
4(�")	+	'	/�<8	'	#��	'	��5	�6�
4(�")	�	'	�*�$	'	#��	'	��5	�6�

4��	���	'	�*�0	'	#��	'	��5	�6�
4(��
	���	'	��	����	'	�*�1	'	#��	'	��5	�6

4(������	'	#��	'	��5	�6�

�

�

�

&

%

$

0

1

 �

��

 1

 0

 $

 %

 &

 �

 �

 �

�����������

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

31

31

www.picaxe.com

The minimum operating circuit for the 20 pin devices is:

See the USB / Serial Download Circuit section of this manual for more details

about the download circuit.

Notes:
1) The 10k/22k resistors must be included for reliable operation.

 DO NOT leave the serial in pin floating as THE PROGRAM WILL NOT RUN!

��

�

�

�

&

%

$

0

1

 �

&�

��

���
��	���

���

 ��

�
�

��

 1

 0

 $

 %

 &

 �

 �

 �

�6$

�6%

�6&

�6�

�6�

�6�

�6

�6�

�6�

+6�

+6

+6�

+6�

+6�

+6&

+6%

+6$

���
��	
�

 ���=

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

32

32

www.picaxe.com

PICAXE-18M2/18X/18M/18A/18 Pinout and Circuit

The pinout diagrams for the 18 pin devices are as follows:

(0.3” DIL or 300mil SOIC)

�����	 	'	�*�	
�����	�	'	�*�	�
�����	$
�����	%

�
#�����	$
#�����	%
#�����	&
#�����	�

�*�	�	'	�����	�
/��
��	#��
/��
��	��
�����

��
#�����	�
#�����	
#�����	�
#�����	�

�

�

�

&

%

$

0

1

 0

 $

 %

 &

 �

 �

 �

 �

�������
	
�����	 	'	�*�	
�����	�	'	�*�	�	'	��2��
�
�����	$	'	��3�����	����
�����	%	'	��3�����	�����

�
#�����	$
#�����	%
#�����	&
#�����	�

�*�	�	'	�����	�
/��
��	#��
/��
��	��
�����

��
#�����	�
#�����	
#�����	�
#�����	�

�

�

�

&

%

$

0

1

 0

 $

 %

 &

 �

 �

 �

 �

�������
	�

�*�	�	'	�����	�
/��
��	#��
/��
��	��
�����

��
#�����	�

#�����	 	'	
��	���
#�����	�

#�����	�	'	�")	�

�����	 	'	�*�	
�����	�	'	�*�	�	'	��2��
�
�����	$	'	��3�����	����
�����	%	'	��3�����	�����

�
#�����	$
#�����	%
#�����	&
#�����	�	'	
��	���

�

�

�

&

%

$

0

1

 0

 $

 %

 &

 �

 �

 �

 �

�������
	�
�*�	�	'	�����	�

/��
��	#��
/��
��	��
�����

��
#�����	�	'	
�2�����

#�����	
#�����	�

#�����	�	'	�")	�

�����	 	'	�*�	
�����	�	'	�*�	�	'	��2��
�
�����	$	'	��3�����	����
�����	%	'	��3�����	�����

�
#�����	$
#�����	%
#�����	&
#�����	�

�

�

�

&

%

$

0

1

 0

 $

 %

 &

 �

 �

 �

 �

�������
	

4*��	'	7���('	�*�	'	#��	'	��5	�6�
4/�8	'	#��5	/��
��	#��	'	�6�

4��5	/��
��	��	'	�6�
4��5	�6&

��
4/��	'	#��	'	��5	+6�

4
��	���	'	7���('	�*�	'	#��	'	��5	+6
4(���
�	'	7���('	�*�	'	#��	'	��5	+6�
4�")	'	7���('	�*�	'	#��	'	��5	+6�

�6 	4��	'	#��	'	�*�	'	7���(5
�6�	4��	'	#��	'	�*�	'	7���(5
�6$	4��	'	#��5	9��	����:
�6%	4��	'	#��5	9��	�����:

�
+6$	4��	'	#��	'	�*�	'	7���(5
+6%	4��	'	#��	'	�*�	'	7���('	�")5
+6&	4��	'	#��	'	�*�	'	7���('	(������5
+6�	4��	'	#��	'	�*�	'	7���('	
��	���5

�

�

�

&

%

$

0

1

 0

 $

 %

 &

 �

 �

 �

 �

�������
	
�

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

33

33

www.picaxe.com

�
��
�
�
�
;
0

�

�

�

&

%

$

0

1

&�

��

���
��	���

���
��	
�
���

 ��

�
�

 0

 $

 %

 &

 �

 �

 �

 �

�6�

�6&

+6�

+6

+6�

+6�

�6

�6�

�6$

�6%

+6$

+6%

+6&

+6�

 ���=

The minimum operating circuit for the 18 pin devices is:

See the USB / Serial Download Circuit section of this manual for more details

about the download circuit.

Notes:
1) The 10k/22k resistors must be included for reliable operation.

 DO NOT leave the serial in pin floating as THE PROGRAM WILL NOT RUN!

2) On 18M2 parts there is no reset pin, C.5 is a general purpose input. On older

parts leg 4 is a reset pin and must be tied high with a 4k7 resistor.

3) No external resonator is required as the chips have an internal resonator.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

34

34

www.picaxe.com

PICAXE-28X2/28X1/28X/28A Pinout and Circuit

The pinout diagrams for the 28 pin devices are as follows:

(0.3” DIL or 300mil SOIC)

#�����	$
#�����	%
#�����	&
#�����	�
#�����	�
#�����	�
#�����	
#�����	�

�
��
��$	'	#��	�$	'	��3�����	����
��%	'	#��	�%	'	��3�����	�����
��	&	'	#��	�&
��	�	'	#��	��	'	
��	���

�����
�*�	�	'	��	��
�*�	 	'	��	�
�*�	�	'	��	��
�*�	�	'	��	��

/��
��	��
/��
��	#��

��
���������
���������

���	'	#��	��	'	��2��
�
��	 	'	#��		� 	'	�")	
��	�	'	#��	��	'	�")	�
��	�	'	#��		��	'	
��	���

��������	�

�

�

�

&

%

$

0

1

 �

 �

 �

 �

�0

�$

�%

�&

��

��

��

�

��

 1

 0

 $

 %

 &

#�����	$
#�����	%
#�����	&
#�����	�
#�����	�
#�����	�
#�����	
#�����	�

�
��
�����	$	'	A�3�����	����
�����	%	'	A�3�����	�����
�����	&
�����	�

�����
�*�	�
�*�	
�*�	�
�*�	�

/��
��	��
/��
��	#��

��
���������
���������

�����	�	'	��2��
�
�����	
�����	�
�����	�

��������	�

�

�

�

&

%

$

0

1

 �

 �

 �

 �

�0

�$

�%

�&

��

��

��

�

��

 1

 0

 $

 %

 &

#�����	$
#�����	%
#�����	&
#�����	�	'	(�")	*
#�����	�
#�����	�	'	(�")	+
#�����	 	'	(�")	�
#�����	�

�
��
��	$	'	#��	�$	'	(���
�	'	��	����
��	%	'	#��	�%	'	(������	'	��	���
��	&	'	#��	�&	'	��
	���
��	�	'	#��	��	'	
��	���	'	��
	��

�����
,-�.,	'	�*�	�	'	��	��

�*�	 	'	��	�
�*�	�	'	��	��
�*�	�	'	��	��

/��
��	��
/��
��	#��

��
���������
���������

�
)��	���	'	#��	��	'	��	�
�")	 	'	#��	� 	'	��	

(�")	�	'	�")	�	'	#��	��	'	��	�
��
	���	'	
��	���	'	#��	��	'	��	�

��������	�

�

�

�

&

%

$

0

1

 �

 �

 �

 �

�0

�$

�%

�&

��

��

��

�

��

 1

 0

 $

 %

 &

+6$	4��	'	#��5
+6%	4��	'	#��5
+6&	4��	'	#��5	9�*� �	'	����('	�"):
+6�	4��	'	#��	'	�*� 5	9����('	(�")	*:
+6�	4��	'	#��	'	�*�15 	9����(:
+6�	4��	'	#��	'	�*�0	'	(
���5	9����('	(�")	+:
+6 	4��	'	#��	'	�*� �	'	(
�� 5	9����('	(�")	�:
+6�	4��	'	#��	'	�*� �	'	(
���5	9����('	�")	'	/��:

�
��
�6$	4��	'	#��	'	(���
�	'	��	����5	9�*� 1	'	����(:
�6%	4��	'	#��	'	(������	'	��	���5	9�*� 0	'	����(:
�6&	4��	'	#��	'	(��
	���5	9�*� $	'	����(:
�6�	4��	'	#��	'	(
��	���	'	(��
	��
5	9�*� %	'	����(:

�����
9����(:	4��)� ;	'	�*��	'	#��	'	��5	�6�
9����(:	4��)��;	'	�*� 	'	#��	'	��5	�6

9*��	'	����(:	4��)��
	'	�*��	'	#��	'	��5	�6�
9����(:	4��)�
	'	�*��	'	#��	'	��5	�6�

/��
��	��
9/�<8:	4#��5	/��
��	#��	'	�6�

��
���������
���������

4�
)��	���	'	#��	'	��5	�6�
4�")	'	#��	'	��5	�6

9(�")	�	'	����('	�*� �:	4�")	'	#��	'	��5	�6�
9����('	�*��:	4(
��	���	'	(��
	���	'	#��	'	��5	�6�

��������	��

�

�

�

&

%

$

0

1

 �

 �

 �

 �

�0

�$

�%

�&

��

��

��

�

��

 1

 0

 $

 %

 &

Features shown in brackets { } are not

available in older -5V and -3V parts.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

35

35

www.picaxe.com

�
��
�
�
�
;�
0

�

�

�

&

%

$

0

1

 �

 �

 �

 �

��$

�����

&�

��

���
��	
�

���
��	���

���

 ��

�
�

�0

�$

�%

�&

��

��

��

�

��

 1

 0

 $

 %

 &

�6�

�6

�6�

�6�

�6�

�6

�6�

�6�

+6$

+6%

+6&

+6�

+6�

+6�

+6

+6�

�6$

�6%

�6&

�6�

 %@>D ���=

The minimum operating circuit for the 28 pin devices is:

See the USB / Serial Download Circuit section of this manual for more details

about the download circuit.

Notes:
1) The 10k/22k resistors must be included for reliable operation.

 DO NOT leave the serial in pin floating as THE PROGRAM WILL NOT RUN!

2) The reset pin must be tied high with the 4k7 resistor to operate.

3) Resonator:

28X2 (optional) 4 (16), 8(32), 10 (40) or 16(64) MHz

28X2-5V (optional) 4 (16), 8(32), or 10(40) MHz

28X2-3V (optional) 4 (16), 8(32), 10 (40) or 16(64) MHz

28X1 (optional) 16MHz

28X 4, 8 or 16MHz

28 / 28A 4MHz

The 28X1 and 28X2 have an internal resonator (4 or 8MHz) and so the external

resonator is optional. On 28A and 28X parts it is compulsory.

The 28X2 has an internal 4xPLL circuit. This multiplies the external clock speed

by 4. Therefore an external 8MHz resonator gives an actual internal operating

clock frequency of 4x8MHz=32MHz.

IMPORTANT NOTE - this manual describes use of the standard range (3-5V) parts.

The older X2 parts were also available in special low power (1.8V to 3.3V) variants. Use

of a 5V supply on a 3.3V part will permanently damage it!

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

36

36

www.picaxe.com

PICAXE-28X2 Module (AXE200/AXE201)

The 28X2 module is a complete PICAXE circuit in convenient 28 pin (0.6” wide)

DIL package. The module is designed to be placed in a ‘turned pin’ style IC

socket on the end user project board (e.g. socket part ICH028W).

Notes:

The module is supplied in a 28 pin carrier socket. It is highly recommended that

the module is left in this socket at all times - ie use a separate socket on the

project board. Then if a leg is accidentally snapped off the carrier socket it is

possible to very carefully remove and replace the low-cost carrier socket.

AXE201/AXE200
The AXE201 and AXE200 are physically identical apart from chip and resonator:

AXE201 AXE200
- PICAXE-28X2 - PICAXE-28X2-5V

- 16MHz resonator - 8MHz resonator

 (=64MHz operation) (=32 MHz operation)

The AXE201 also supports the additional new PICAXE-28X2 silicon features such

as touch sensors and additional analogue / pwm channels. These are marked

within the { } brackets above.

28X2-5V Module

part AXE200

��<	4$; ��5
��
�����

&�
+6$	4��'#��5
+6%	4��'#��5
+6&	4��'#��5	9�*� �'����('�"):
+6�	4��'#��'�*� 5	9����('(�")	*:
+6�	4��'#��'�*�15	9����(:
+6�	4��'#��'�*�0'(
���5	9����('(�")+5
+6 	4��'#��'�*� �'(
�� 5	9����('(�")�:
+6�	4��'#��'�*� �	'	(
���5	9����('�"):
�6�	4��'#��'�*��'��
5	9����('*��:
�6�	4��'#��'�*��'�
5	9����(:

9#��:	/��
��	#��	'	��
/��
��	��

-�*
��

4�
)��	���'#��'��5	�6�
4�")'#��'��5	�6

9(�")	�'����('�*� �:	4�")'#��'��5	�6�
9����('�*��:	4(��
	���'(
��	���'#��'��5	�6�

9����('�*� %:	4(
��	���	'	(��
	��
'#��'��5	�6�
9����('�*� $:	4(��
	���'#��'��5	�6&

9����('�*� 0:	4(������	'	��	���'#��'��5	�6%
9����('�*� 1:	4(���
�	'	��	����'#��'��5	�6$

9����(:	4� ;	'�*��'#��'��5	�6�
9����(:	4��;	'�*� '#��'��5	�6

��������	���
�����
�0

�$

�%

�&

��

��

��

�

��

 1

 0

 $

 %

 &

�

�

�

&

%

$

0

1

 �

 �

 �

 �

���������	2��
�����$,/+	��
�����%	���
��
��"�����	�����

&�	&��)�	��"
�������	��B������

������;�0��

�����	�"
��(

-�*

��'%�@>D
���������

�0

�$

�%

�&

��

��

��

�

��

 1

 0

 $

 %

 &

�

�

�

&

%

$

0

1

 �

 �

 �

 �

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

37

37

www.picaxe.com

Power
Power can be supplied at 7-12V DC via pin 28. This is then regulated on-board

via a 5V 500mA low drop out regulator. The 5V output is available at pin 25.

Alternately a 4.5V or 5V supply can be connected directly to pin 25, leaving pin

28 unconnected.

Reset Switch
There is an on -board reset switch (with 4k7 pull up included on -board). The

module can also be reset by connecting the reset pin (pin 26) to 0V.

Downloads
Download can be made via the on-board socket (AXE027 USB or AXE026 serial

download cable) or via the Serial In / Serial Out pins.

LED
The LED pin (pin 3) connects to an on-board LED/330R resistor which then

connects to 0V. If left unconnected the LED does not operate, and hence draws no

current (sometimes desirable in battery based systems). To use the LED as a

power indicator simply connect the LED pin (pin 3) to 5V (pin 25). Alternately

the LED pin can be connected to an output pin and hence controlled by high /

low commands within the user program.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

38

38

www.picaxe.com

PICAXE-28X2 Shield Base (AXE401)

The PICAXE-28X2 shield base is a complete open source PICAXE circuit in the

popular ‘shield’ format to allow connection of third party shields (motor driver,

ethernet, GSM etc). It is supplied with a free matching shield prototyping board.

Power
Power can be supplied at 9-12V DC via the 2.1mm tip positive power connector.

This is then regulated on-board via a 5V 500mA low drop out regulator. A further

3V3 regulator also provides a 3V3 supply. The system voltage can be selected to

be either 5V or 3V3, as the PICAXE-28X2 will work at either voltage. All power

connections are also available on the 6 pin power header.

Reset Switch
There is an on-board reset switch (with 4k7 pull up included on-board). The

module can also be reset by connecting the reset pin to 0V.

Downloads
Download can be made via the on-board socket (AXE027 USB or AXE026 serial

download cable). The download pins are separate to the i/o pins.

User LED
The LED connects to S.13 (and to a resistor which then connects to 0V). If the H4

jumper link is left unconnected the LED is disconnected, and hence draws no

current (sometimes desirable in battery based systems). To use the LED add

jumper H4 to connect the LED to output pin S.13. the LED may then be

controlled by high / low commands within the user program.

Inputs/Outputs
The input/output connections have been very carefully designed to match almost

all third party shield layouts, including advanced shield designs that use SPI

communication, PWM outputs or high speed serial communication. The

generally used shield pin notation is A0-A5 and 0-13, and so the PICAXE-28X2

compiler also matches this notation by accepting the shield pin nicknames (S.A0,

S.A1, S.1, S.2 etc.) as well as the original PICAXE pin names.

���2		4�6�5
?��
/6 �	4�6�5
/6 �	4�6�5
/6 	4�6&5
/6 �	4�6�5
/61			4�6 5
/60			4�6�5

/6$			4+6$5
/6%			4+6%5
/6&			4+6&5
/6�			4+6 5
/6�			4+6�5
/6�			4+6�5
/6 			4�6%5
/6�			4�6$5

4�6�5		/6��
4�6 5		/6�
4�6�5		/6��
4�6�5		/6��
4+6�5		/6��
4+6�5		/6�&

�����
���
&�

?��
?��

�
�	41; ��5

�
�	41; ��5 ,/+	�����

����� 	������;�0��	/(
���	+���

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

39

39

www.picaxe.com

Shield
Header

Shield
Nickname

Primary Pin
Function

Advanced Pin
Function

PICAXE
Pin Name

PICAXE
ADC

RESET Reset Reset

3V3 3.3V Supply Out V+

5V 5V Supply Out 5V Supply In V+

GND 0V 0V Supply In 0V

GND 0V 0V

VIN Supply In (9-12V DC)

A0 S.A0 In / Out / ADC / Touch Comp1- A.0 0

A1 S.A1 In / Out / ADC / Touch Comp2- A.1 1

A2 S.A2 In / Out / ADC / Touch Comp2+ / DAC A.2 2

A3 S.A3 In / Out / ADC / Touch Comp1+ / Vref A.3 3

A4 S.A4 In / Out / ADC / Touch B.3 9

A5 S.A5 In / Out / ADC / Touch hpwm D B.4 11

0 S.0 In / Out / ADC / Touch hserin / kb data C.7 19

1 S.1 In / Out / ADC / Touch hserout / kb clk C.6 18

2 S.2 In / Out / ADC / Touch hpwm B / hint 2 B.2 8

3 S.3 In / Out / ADC / Touch pwm / hint0 B.0 12

4 S.4 In / Out / ADC / Touch hpwm C / hint 1 B.1 10

5 S.5 In / Out / ADC / Touch pwm B.5 13

6 S.6 In / Out B.6 -

7 S.7 In / Out B.7 -

8 S.8 In / Out timer clk C.0 -

9 S.9 In / Out pwm C.1 -

10 S.10 In / Out / ADC / Touch hpwm A / pwm C.2 14

11 S.11 In / Out / ADC / Touch hspi sdo C.5 17

12 S.12 In / Out / ADC / Touch hspi sdi / hi2c sda C.4 16

13 S.13 In / Out / ADC / Touch
(or LED via H4) hspi sck / hi2c scl C.3 4

GND 0V 0V

VREF S.A3 In / Out / ADC / Touch Comp1+ / Vref A.3 3

For further details about the PICAXE-28X2 shield base system please see the

dedicated datasheet available free at:

www.rev-ed.co.uk/docs/axe401.pdf

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

40

40

www.picaxe.com

PICAXE-40X2/40X1/40X Pinout and Circuit

The pinout diagram for the 40 pin device is as follows:

(0.6” DIL or 44pin TQFP)

+6$	4��	'	#��5
+6%	4��	'	#��5
+6&	4��	'	#��5	9�*� �	'	����(:
+6�	4��	'	#��	'	�*� 5	9����(:
+6�	4��	'	#��	'	�*�15	9����(:
+6�	4��	'	#��	'	�*�0	'	(
���5	9����(:
+6 	4��	'	#��	'	�*� �	'	(
�� 5	9����(:
+6�	4��	'	#��	'	�*� �	'	(
���5	9����('	/��:

�
��
*6$	4��	'	#��	'	(�")	*	'	��	����5	9�*��$	'	����(:
6%	4��	'	#��	'	(�")	�	'	��	���5	9���%	'	����(:
6&	4��	'	#��	'	(�")	+5	9���&	'	����(:
6�	4��	'	#��5	9����	'	����(:
�6$	4��	'	#��	'	(���
�5	9�*� 1	'	����(:
�6%	4��	'	#��	'	(������5	9�*� 0	'	����(:
�6&	4��	'	#��	'	(��
	���5	9�*� $	'	����(:
�6�	4��	'	#��	'	(
��	���	'	(��
	��
5	9�*� %	'	����(:
6�	4��	'	#��5	9����	'	����(:
6�	4��	'	#��5	9����	'	����(:

�����
9����(:	4��)� ;	'	�*��	'	#��	'	��5	�6�
9����(:	4��)��;	'	�*� 	'	#��	'	��5	�6

9*��	'	����(:	4��)��
	'	�*��	'	#��	'	��5	�6�
9����(:	4��)�
	'	�*��	'	#��	'	��5	�6�

/��
��	��
9/�<8:	4#��5	/��
��	#��	'	�6�
9����(:	4�*�&	'	#��	'	��5	�6&
9����(:	4�*�%	'	#��	'	��5	�6%
9����(:	4�*�$	'	#��	'	��5	�6$

�
��

���������
���������

4�
)��	���	'	#��	'	��5	�6�
4�")	'	#��	'	��5	�6

9����('	�*� �:	4(�")	�	'	�")	'	#��	'	��5	�6�
9����('	�*��:	4(
��	���	'	(��
	���	'	#��	'	��5	�6�

	9����('	�*���:	4#��	'	��5	*6�
	9����('	�*�� :	4#��	'	��5	*6

�����������

�

�

�

&

%

$

0

1

 �

 �

 �

 �

 &

 %

 $

 0

 1

��

��

�1

�0

�$

�%

�&

��

��

��

�

��

�1

�0

�$

�%

�&

��

��

��

�

Features shown in brackets { } are not

available in older -5V and -3V parts.

<
��
	�
��
��
��
��

<
��
	�
��
��
��
�� +
6�

+
6&

+
6%

+
6$

�
��
��

	�
6�

�
6

�
6�

�
6�

�6$
*6�
*6&
*6%
*6$
��
�

+6�
+6
+6�
+6�

<��	���������
�6�
���������
���������
��
�

�6$
�6%
�6&
�6�	'	/��
��	#��
/��
��	��

�
6%

�
6&

�
6�

*
6�

*
6�

*
6

*
6�

�
6�

�
6�

�
6

<
��
	�
��
��
��
��

�� �� �� � �� �1 �0 �$ �% �& ��

��

��

�

��

�1

�0

�$

�%

�&

��

��

 � � � & % $ 0 1 �� � ��

�

�

�

&

%

$

0

1

 �

�����������
�������������

�������������	�
��
����
�
�����������
���������
���

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

41

41

www.picaxe.com

<
��
	�
��

��
��
��

<
��
	�
��

��
��
��

#
��
��

�	�
#
��
��

�	&
#
��
��

�	%
#
��
��

�	$
�
��
��

,
-�

.
,
	'	
�
*
�
	�
	'	
��
	�
�

�
*
�
	
	'	
��
	�

�
*
�
	�
	'	
��
	�
�

�
*
�
	�
	'	
��
	�
�

��	�$	'	#��	�$	'	(���
�
�����	�
�����	&

�����	%	'	��	���
�����	$	'	��	����

��
�

#�����		�
#�����	
#�����	�
#�����	�

<��	���������
��	��	'	#��	��	'	�
)��	���
���������
���������
��
�

�*�	$
�*�	%
�*�	&
/��
��	#��
/��
��	��

��
	�
%	
'	#

��
	�
%	
'	(

��
��
��

��
	�
&	
'	#

��
	�
&	
'	�
�

	�
��

��
	�
�	
'	#

��
	�
�	
'	

��
	�
��

	'	
��

	�
�

��
��

�	�
��
��

�	�
��
��

�	
��
��

�	�
��
	�
�	
'	#

��
	�
�	
'	�

�	
��
�	'
	�
�

	�
��

��
	�
�	
'	#

��
	�
�	
'	�

"
)
	�

��
	�
 	
'	#

��
	�
 	
'	�

"
)
	

<
��
	�
��

��
��
��

�� �� �� � �� �1 �0 �$ �% �& ��

��

��

�

��

�1

�0

�$

�%

�&

��

��

 � � � & % $ 0 1 �� � ��

�

�

�

&

%

$

0

1

 �

����������

�������������

#�����	$
#�����	%
#�����	&
#�����	�
#�����	�
#�����	�
#�����	
#�����	�

�
��
�����	$	'	��	����
�����	%	'	��	���
�����	&
�����	�
��	�$	'	#��	�$	'	(���
�
��	�%	'	#��	�%	'	(������
��	�&	'	#��	�&	'	��
	���
��	��	'	#��	��	'	
��	���	'	��
	��

�����	�
�����	�

�����
,-�.,	'	�*�	�	'	��	��

�*�	 	'	��	�
�*�	�	'	��	��
�*�	�	'	��	��

/��
��	��
/��
��	#��

�*�	&
�*�	%
�*�	$

�
��

���������
���������

�
)��	���	'	#��	��	'	��	��
�")	 	'	#��	� 	'	��	�
�")	�	'	#��	��	'	��	��

��	���	'	��
	���	'	#��	��	'	��	��
�����	�
�����	

����������

�

�

�

&

%

$

0

1

 �

 �

 �

 �

 &

 %

 $

 0

 1

��

��

�1

�0

�$

�%

�&

��

��

��

�

��

�1

�0

�$

�%

�&

��

��

��

�

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

42

42

www.picaxe.com

The minimum operating circuit for the 40 pin device is the same as the 28 pin

minimum circuit (altering the appropriate pin numbers as required).

See the USB / Serial Download Circuit section of this manual for more details

about the download circuit.

Notes:
1) The 10k/22k resistors must be included for reliable operation.

 DO NOT leave the serial in pin floating as THE PROGRAM WILL NOT RUN!

2) The reset pin must be tied high with the 4k7 resistor to operate.

3) Resonator:

40X2 (optional) 4 (16), 8(32), 10 (40) or 16(64) MHz

40X2-5V (optional) 4 (16), 8(32), or 10(40) MHz

40X2-3V (optional) 4 (16), 8(32), 10 (40) or 16(64) MHz

40X1 (optional) 16MHz

40X 4, 8 or 16MHz

The 40X1 and 40X2 have an internal resonator (4 or 8MHz) and so the external

resonator is optional. On 40X parts it is compulsory.

The 40X2 has an internal 4xPLL circuit. This multiplies the external clock speed

by 4. Therefore an external 4MHz resonator gives an actual internal operating

clock frequency of 4x4MHz=16MHz.

IMPORTANT NOTE - this manual describes use of the standard range (3-5V) parts.

The early X2 parts were also available in a special low power (1.8V to 3.3V) variants.

Use of a 5V supply on these special 3.3V part will permanently damage it!

#�����	$
#�����	%
#�����	&
#�����	�
#�����	�
#�����	�
#�����	
#�����	�

�
��
�����	$	'	��3�����	����
�����	%	'	��3�����	�����
�����	&
�����	�
��	�$	'	#��	�$
��	�%	'	#��	�%
��	�&	'	#��	�&
��	��	'	#��	��	'	
��	���
�����	�
�����	�

�����
�*�	�	'	��	��
�*�	 	'	��	�
�*�	�	'	��	��
�*�	�	'	��	��

/��
��	��
/��
��	#��

�*�	&
�*�	%
�*�	$

�
��

���������
���������

��	��	'	#��	��
��	� 	'	#��		� 	'	�")	
��	��	'	#��	��	'	�")	�
��	��	'	#��		��	'	
��	���

�����	�	'	��2��
�
�����	

����������

�

�

�

&

%

$

0

1

 �

 �

 �

 �

 &

 %

 $

 0

 1

��

��

�1

�0

�$

�%

�&

��

��

��

�

��

�1

�0

�$

�%

�&

��

��

��

�

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

43

43

www.picaxe.com

USB Download Circuit

The USB download circuit is identical for all PICAXE chips. It consists of 3 wires

from the PICAXE chip to the AXE027 USB cable. One wire sends data from the

computer to the serial input of the PICAXE, one wire transmits data from the

serial output of the PICAXE to the computer, and the third wire provides a

common ground.

Note this circuit can also be used for the AXE026 serial cable. Therefore the same

circuit can be used with either USB or serial cable.

The minimum download circuit is shown here.

Note that the two resistors are not a potential divider. The 22k resistor works with

the internal microcontroller diodes to clamp the serial voltage to the PICAXE

supply voltage and to limit the download current to an acceptable limit. The 10k

resistor stops the serial input ‘floating’ whilst the download cable is not

connected. This is essential for reliable operation.

The two download resistors must be included on every PICAXE circuit (i.e. not

built into the cable). The serial input must never be left unconnected. If it is left

unconnected the serial input will ‘float’ high or low and will cause unreliable

operation, as the PICAXE chip will receive spurious floating signals which it may

interpret as a new download attempt.

�
�

�
�

� ������

���
��	���
���
��	
�
�����

 ��

���!�	!
�"

�

�

�

�

�
�

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

44

44

www.picaxe.com

Serial Download Circuit (NB: Obsolete, for info only)

The serial download circuit is identical for all PICAXE chips. It consists of 3 wires

from the PICAXE chip to the AXE026 serial cable. One wire sends data from the

computer to the serial input of the PICAXE, one wire transmits data from the

serial output of the PICAXE to the computer, and the third wire provides a

common ground. See the USB adapter section for details on how to use the USB

port adapter.

The minimum download circuit is shown here. This circuit is appropriate for

most educational and hobbyist work.

Note that the two resistors are not a potential divider. The 22k resistor works with

the internal microcontroller diodes to clamp the serial voltage to the PICAXE

supply voltage and to limit the download current to an acceptable limit. The 10k

resistor stops the serial input ‘floating’ whilst the download cable is not

connected. This is essential for reliable operation.

The two download resistors must be included on every PICAXE circuit (i.e. not

built into the cable). The serial input must never be left unconnected. If it is left

unconnected the serial input will ‘float’ high or low and will cause unreliable

operation, as the PICAXE chip will receive spurious floating signals which it may

interpret as a new download attempt.

�
�

�
�

� ������

���
��	���
���
��	
�
�����

 ��

���!�	!
�"

������

���
��	���
���
��	
�
�����

 ��

�
�

�
�

�

�

�

�6	��	������	���
��	���
�6	��	������	���
��	
�
&6	��	������	��

1	.�3	*	2�)���	��������)�����

�

�
�

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

45

45

www.picaxe.com

Enhanced Serial Download Circuit (NB: Obsolete, for info only)

The BAT85 Shokkty diode operate at a lower device voltage than the internal

microcontroller diodes, providing a more accurate voltage reference. The

additional 180R resistor provides additional preventative short circuit and static

protection on the serial output pin.

Not required when the AXE027 USB cable is used.

Download Cables

The USB download cable (AXE027) is recommended for all modern computers.

It is compatible with any computer with a USB port.

The older serial download cable (part AXE026) consists of

a 3.5mm stereo plug, which mates with a stereo socket

(part CON039) on the project board. This type of

connection is more robust and reliable than the Molex

header in the educational environment.

All traditional serial computer connection is via the serial

port (9 pin D connector).If you have a very old computer with a 25pin serial port,

you require a 25-9 pin adapter (part ADA010), which are also available from most

high street computer stores.

�
�

�
�

� ������

���
��	���
���
��	
�
�����

 ��

���!�	!
�"

 0�

+�70&

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

46

46

www.picaxe.com

Using the Serial In pin as a general input pin

On M2 and X2 parts the ‘serial in’ pin may be used as a general purpose input,

connected to a switch as shown.

However there are certain special conditions to this use:

1) The program must contain a ‘disconnect’ command. This command prevents

the PICAXE chip from scanning the serial in pin for new program downloads.

If you do not add this command the PICAXE will reset when the switch is

pressed.

2) After a ‘disconnect’ command is used it will be necessary to perform a power-

on ‘hard-reset’ to download a new program.

3) The switch must be open during a new program download.

Due to these special requirements it is generally better, wherever possible, to

reserve the serial in pin for dedicated programming use. Only use as a general

purpose input when all other pins are already used.

�
�

�
�

� ������

���
��	���
���
��	
�
�����

 ��

���!�	!
�"

�

�
�

&�

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

47

47

www.picaxe.com

Reset Circuit

All 28 and 40 pin (and some earlier 18 pin) PICAXE have a ‘reset’ pin. This pin

must be in the high condition for the PICAXE microcontroller to function. If this

pin is left unconnected the microcontroller will not operate reliably. To tie this

pin high connect a 4.7k resistor between the reset pin and V+ supply rail (do not

connect the pin directly to V+, always use a resistor). A reset switch is optional,

but highly recommended. This should be a ‘push to make’ type and connected

between the reset pin and 0V.

All 8, 14 and 20 pin (and 18M2) PICAXE do not have a reset pin. Therefore to

reset the microcontroller the power supply must be disconnected and then

reconnected. Note that, when using capacitors in your supply circuit, these

capacitors may hold enough charge to keep the microcontroller powered for

several seconds after the power supply is disconnected.

Resonator

Different PICAXE chips have internal or external (or both) options:

PICAXE INTERNAL EXTERNAL
08, 18 4 -

‘A’ parts 4,8 -

‘M’ parts 4,8 -

‘X’ parts 4,8 -

‘M2’ parts 4,8,16,32 -

20X2 4,8,16,32,64 -

Discontinued old parts:

28A - 4

28X - 4,8,16

28X1 4,8 4,8,16

28X2-5V 4,8 4 (=16), 8 (=32), 10 (=40)

28X2-3V 4,8,16 4 (=16), 8 (=32), 10 (=40), 16 (=64)

40X - 4,8,16

40X1 4,8 4,8,16

40X2-5V 4,8 4 (=16), 8 (=32), 10 (=40)

40X2-3V 4,8,16 4 (=16), 8 (=32), 10 (=40), 16 (=64)

All 28 and 40 pin PICAXE can use an external resonator (the resonator is internal

within the 08, 14, 20 and 18 pin PICAXE). Note that the internal resonator

within the 08,14,20 and 18 PICAXE is not quite as accurate as an external

resonator. Although this does not cause any issues with the majority of projects, if

a specialised project requires very high precision a 28 or 40pin PICAXE should be

used.

An 3 pin ceramic resonator is recommended when required. This device consists

of a resonator and two loading capacitors in a single 3 pin package. The centre

pin is connected to 0V and the outer two pins to the two PICAXE resonator pins

(the resonator can be used either way around).

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

48

48

www.picaxe.com

All parts default to 4MHz internal operation, apart from the X2 parts which

default to 8MHz internal operation.

The 28X2 and 40X2 contain an internal 4xPLL circuit. This means that the

internal operating frequency is 4x the external resonator frequency. The

maximum speed of these devices is therefore 64MHz (using a 16MHz resonator).

If desired a 2 pin resonator, or 2 pin crystal, can be used with X, X1 or X2 parts. In

this case two appropriate loading capacitors must also be used with the

resonator/crystal. See the crystal manufacturer’s datasheet for more information.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

49

49

www.picaxe.com

Testing the System

This first simple program can be used to test your system. It requires the

connection of an LED (and 330R resistor) to output pin 4. If connecting the LED

directly to a PICAXE chip on a proto (or home-made) board, connect the LED

between the output pin and 0V. When using the project boards (e.g. as supplied

within the 18 and 28 starter packs), connect the LED between V+ and the output

connector, as the output is buffered by the darlington driver chip on the project

board. (Make sure the LED is connected the correct way around!).

1. Connect the AXE027 PICAXE cable to the computer USB port (and install the

drivers if this is the very first time the USB cable is used).

2. Start the PICAXE Editor software.

3. Select the Workspace Explorer ‘Settings’ tab.

4. Select the correctPICAXE type.

5. Select the correct virtual COM port for the AXE027 USB cable.

6. Type in the following program:

main: high B.4

pause 1000

low B.4

pause 1000

goto main

(NB note the colon (:) directly after the label ‘main’ and the spaces between

the commands and numbers)

7. Make sure the PICAXE circuit is connected to the serial cable, and that the

batteries are connected. Make sure the LED and 330R resistor are connected

to output B.4.

8. Select PICAXE>Program

A download bar should appear as the program downloads. When the

download is complete the program should start running automatically – the

LED on output 4 should flash on and off every second.

If your program does not download use the check list and hard-reset procedure

described in the next two sections to isolate the mistake.

��

����

������	�
�	�
�

����

�������	�����
������	�

�������
��

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

50

50

www.picaxe.com

Hard-reset procedure

The download process involves the PICAXE microcontroller regularly checking

the serial input line for a new download signal from the computer. This is

automatic and not noticed by the PICAXE user. However there can be rare

occasions when the PICAXE does not check the serial input line quickly enough

whilst running its program. These situations can include:

• Corrupt program in PICAXE (e.g. if power or cable removed part way through

a new download)

• Incorrect clock frequency (set by setfreq command)

• Pause or wait commands longer than 5 seconds used in program.

• Use of serin, infrain or keyin within program.

Fortunately it is very simple to resolve this issue, as the very first thing any

PICAXE chip does on power reset is check for a new computer download.

Therefore if you reset the PICAXE whilst a download is being started by the

computer, the new download will always be recognised. This process is called a

hard-reset.

To perform a hard-reset using the reset switch (28, 40 pin PICAXE):

1) Press and hold down the reset switch.

2) Click the PICAXE>Program menu to start a download.

3) Wait until the progress-bar appears on screen.

4) Wait 1 second then release the reset switch.

To perform a hard reset using the power supply (all sizes):

1) Disconnect the power supply.

2) Wait until all power supply decoupling capacitors have discharged (can take

up to 30 seconds or more depending on circuit design).

3) Click the PICAXE>Program menu to start a download.

4) Wait until the progress-bar appears on screen.

5) Reconnect the power supply

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

51

51

www.picaxe.com

Download Checklist

If you cannot download your program, check the following items. Remember

that all new PICAXE are pre-programmed and tested, therefore if a new chip does

not download it is generally a hardware setup issue.

If the program fails part way through a download this is generally a power supply

issue (or loose cable connection). Try with 3 new alkaline cells giving exactly

4.5V.

PICAXE microcontroller
• Is the correct PICAXE chip correctly inserted in socket

• Is a PICAXE chip (not blank un-programmed PIC chip) being used.

• Is a damaged PICAXE chip being used (e.g. chip that has had over-voltage or

reverse power supply applied)

• Is a smooth 4.5V to 5.5V DC supply correctly connected. TEST ON ACTUAL

CHIP V+ and 0V pins with a multimeter!

• Is the reset pin connected to V+ via 4.7k resistor (18 / 28 / 40 pin chips)

• Is the correct 3 pin resonator connected if required (28 / 40 pin chips)

• Are the serial download 10k/22k resistors correctly connected.

Software
• Latest version PICAXE Editor installed (see software page at www.picaxe.co.uk

for up to date information)

• Correct serial port selected (View>Options>Port menu).

• Correct resonator speed selected (if appropriate) (View>Options>Mode

menu)

• No conflicting serial port software running on computer (in particular PDA

type ‘hotsync’ software and interactive whiteboard software)

Serial Download Cable(part AXE026)
• Correctly wired download cable.

• Correctly wired download socket with 10k/22k resistors.

• All download socket pins correctly soldered to PCB.

• Download cable correctly connected between computer and microcontroller.

• Download cable inserted fully into socket.

USB Download Cable (part AXE027)
• USB cable configured to use correct serial port

• USB cable installed with correct driver (Vista / XP users - ensure you are using

the correct XP specific driver (also valid for Vista), available from the software

page at www.picaxe.co.uk)

USB adapter (part USB010)
• USB adapter configured to use correct serial port

• USB adapter installed with correct driver (XP users - ensure you are using the

correct XP specific driver, available from the software page at

www.picaxe.co.uk)

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

52

52

www.picaxe.com

Understanding the PICAXE memory.

The PICAXE memory consists of three different areas. The amount of memory

varies between PICAXE types.

Program Memory.
Program memory is where the program is stored after a new download. This is

‘FLASH’ rewritable memory that can be reprogrammed up to (typically) 100,000

times. The program is not lost when power is removed, so the program will start

running again as soon as the power is reconnected.

It is not generally required to erase a program, as each download automatically

over-writes the whole of the last program. However if you want to stop a program

running you can use the PICAXE>Clear Hardware Memory menu to download an

‘empty’ program into the PICAXE.

On standard PICAXE chips (M2, X, X1) you can download around 600 to 1000

lines of BASIC code. On A or M revision parts you can download around 80 lines

and on educational parts around 40 lines. X2 parts support up to 4 programs of

1000 lines. Note these values are approximate as different commands require

different amounts of memory space. To check your memory usage use the

PICAXE>Check Syntax menu option.

On X1 and X2 parts 256 bytes of the program memory can also be ‘reserved’ as a

lookup table (e.g. for LCD messages). See the table / readtable commands in part

2 of the manual for more details.

Data Memory
Data memory is additional storage space within the microcontroller. The data is

also not lost when power is removed. Each download resets all data bytes to 0,

unless the EEPROM command has been used to ‘preload’ data into the data

memory. See the EEPROM, read and write command descriptions for more

details.

On the PICAXE-08 / 08M / 08M2 / 14M / 20M / 18 / 18M / 18M2 the data

memory is ‘shared’ with the program memory Therefore larger programs will

result in a smaller available data memory area.

On all other PICAXE chips the data and program memory are completely

separate.

RAM (Variables)
The RAM memory is used to store temporary data in variables as the program

runs. It loses all data when the power is removed. There are four types of variable

- general purpose, storage, scratchpad and special function.

Variables are memory locations within the PICAXE microcontroller that store

data whilst the program is running. All this information is lost when the

microcontroller is reset.

For information about variable mathematics see the ‘let’ command information

in part 2 of the manual.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

53

53

www.picaxe.com

General Purpose Variables.
There are 14 or more general purpose byte variables. These byte variables are

labelled b0, b1 etc. Byte variables can store integer numbers between 0 and 255.

Byte variables cannot use negative numbers or fractions, and will ‘overflow’

without warning if you exceed the 0 or 255 boundary values (e.g. 254 + 3 = 1)

(2 - 3 = 255)

However for larger numbers two byte variables can be combined to create a word

variable, which is capable of storing integer numbers between 0 and 65535.

These word variables are labelled w0, w1 etc, and are constructed as follows:

w0 = b1 : b0

w1 = b3 : b2

w2 = b5 : b4

w3 = b7 : b6

w4 = b9 : b8

w5 = b11 : b10

w6 = b13 : b12 etc.

Therefore the most significant byte of w0 is b1, and the least significant byte of

w0 is b0.

In addition bytes b0 and b1 (w0) are broken down into individual bit variables.

These bit variables can be used where you just require a single bit (0 or 1) storage

capability.

b0 = bit7: bit6: bit5: bit4: bit3: bit2: bit1: bit0

b1 = bit15: bit14: bit13: bit12: bit11: bit10: bit9: bit8

M2, X1 and X2 parts also support bit16-bit31 (b2-b3)

You can use any word, byte or bit variable within any mathematical assignment

or command that supports variables. However take care that you do not

accidentally repeatedly use the same ‘byte’ or ‘bit’ variable that is being used as

part of a ‘word’ variable elsewhere.

All general purpose variables are reset to 0 upon a program reset.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

54

54

www.picaxe.com

Storage Variables.
Storage variables are additional memory locations allocated for temporary storage

of byte data. They cannot be used in mathematical calculations, but can be used

to temporarily store byte values by use of the peek and poke commands.

The number of available storage locations varies depending on PICAXE type. The

following table gives the number of available byte variables with their addresses.

These addresses vary according to technical specifications of the microcontroller.

See the poke and peek command descriptions for more information.

PICAXE-18M2 228 28 to 255 ($1C to $FF)

PICAXE-14M2/20M2 484 28 to 511 ($1C to $1FF)

‘M’ parts 48 80 to 127 ($50 to $7F)

‘A’ parts 48 80 to 127 ($50 to $7F)

‘X’ parts 96 80 to 127 ($50 to $7F), 192 to 239 ($C0 to $EF)

PICAXE-20X2 72 56 to 127 ($38 to $7F)

PICAXE-28X1 95 80 to 126 ($50 to $7E), 192 to 239 ($C0 to $EF)

PICAXE-28X2 200 56 to 255 ($38 to $FF)

PICAXE-40X 112 80 to 127 ($50 to $7F), 192 to 255 ($C0 to $FF)

PICAXE-40X1 95 80 to 126 ($50 to $7E), 192 to 239 ($C0 to $EF)

PICAXE-40X2 200 56 to 255 ($38 to $FF)

PICAXE-08 none

Scratchpad
PICAXE-20X2 128 0 to 127 ($00 to $7F)

PICAXE-28X1 128 0 to 127 ($00 to $7F)

PICAXE-28X2 1024 0 to 1023 ($00 to $3FF)

PICAXE-40X1 128 0 to 127 ($00 to $7F)

PICAXE-40X2 1024 0 to 1023 ($00 to $3FF)

Special Function Variables (SFR)
The special function variables available for use depend on the PICAXE type.

PICAXE-08 / 08M / 08M2 SFR
pins = the input / output port

dirs = the data direction register (sets whether pins are inputs or outputs)

infra = another term for variable b13, used within the infrain2 command

The variable pins is broken down into individual bit variables for reading from

individual inputs with an if...then command. Only valid input pins are

implemented.

pins = x : x : x : pin4 : pin3 : pin2 : pin1 : x

The variable dirs is also broken down into individual bits.

Only valid bi-directional pin configuration bits are implemented.

dirs = x : x : x : dir4 : x : dir2 : dir1 : x

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

55

55

www.picaxe.com

PICAXE-14M2/18M2/20M2 SFR

pinsB - the portB input pins

outpinsB - the portB output pins

dirsB - the portB data direction register

pinsC - the portC input pins

outpinsC - the portC output pins

dirsC - the portC data direction register

bptr - the RAM pointer

@bptr - the byte RAM value pointed to by bptr

@bptrinc - the byte RAM value pointed to by bptr (post increment)

@bptrdec - the byte RAM value pointed to by bptr (post decrement)

time - the current time

task - the current task

When used on the left of an assignment ‘pins’ applies to the ‘output’ pins e.g.

let outpinsB = %11000000

will switch outputs 7,6 high and the others low.

When used on the right of an assignment ‘pins’ applies to the input pins e.g.

let b1 = pinsB

will load b1 with the current state of the input pin on portB.

The variable pinsX is broken down into individual bit variables for reading from

individual inputs with an if...then command. Only valid input pins are

implemented e.g.

pinsB = pinB.7 : pinB.6 : pinB.5 : pinB.4 :

pinB.3 : pinB.2 : pinB.1 : pinB.0

The variable outpinX is broken down into individual bit variables for writing

outputs directly. Only valid output pins are implemented. e.g.

outpinsB = outpinB.7 : outpinB.6 : outpinB.5 : outpinB.4 :

outpinB.3 : outpinB.2 : outpinB.1 : outpinB.0

The variable dirsX is broken down into individual bit variables for setting inputs/

outputs directly e.g.

dirsB = dirB.7 : dirB.6 : dirB.5 : dirB.4 :

dirB.3 : dirB.2 : dirB.1 : dirB.0

See the ‘Variables - General’ section in Part 2 of the manual for more information

about @bptr, @bptrinc, @bptrdec

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

56

56

www.picaxe.com

PICAXE-14M/20M SFR (Not M2 parts)
pins = the input port when reading from the port

(out)pins = the output port when writing to the port

infra = another term for variable b13, used within the infrain2

 command

keyvalue = another name for infra, used within the keyin command

Note that pins is a ‘pseudo’ variable that can apply to both the input and output

port.

When used on the left of an assignment pins applies to the ‘output’ port e.g.

let pins = %11000011

will switch outputs 7,6,1,0 high and the others low.

When used on the right of an assignment pins applies to the input port e.g.

let b1 = pins

will load b1 with the current state of the input port.

Additionally, note that

let pins = pins

means ‘let the output port equal the input port’

To avoid this confusion it is recommended that the name ‘outpins’ is used is this

type of statement e.g.

let outpins = pins

The variable pins is broken down into individual bit variables for reading from

individual inputs with an if...then command. Only valid input pins are

implemented.

pins = x : x : x : pin4 : pin3 : pin2 : pin1 : pin0 (14M)

pins = pin7 : pin6 : pin5 : pin4 : pin3 : pin2 : pin1 : pin0 (20M)

The variable outpins is broken down into individual bit variables for writing

outputs directly. Only valid output pins are implemented.

outpins = x : x : outpin5 : outpin4 :

outpin3 :out pin2 : outpin1 : outpin0 (14M)

outpins = outpin7 : outpin6 : outpin5 : outpin4 :

outpin3 :out pin2 : outpin1 : outpin0 (20M)

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

57

57

www.picaxe.com

PICAXE-18 / 18A / 18M / 18X SFR (not 18M2)
pins = the input port when reading from the port

(out)pins = the output port when writing to the port

infra = a separate variable used within the infrain command (not 18)

keyvalue = another name for infra, used within the keyin command (not

 18)

Note that pins is a ‘pseudo’ variable that can apply to both the input and output

port.

When used on the left of an assignment pins applies to the ‘output’ port e.g.

let pins = %11000011

will switch outputs 7,6,1,0 high and the others low.

When used on the right of an assignment pins applies to the input port e.g.

let b1 = pins

will load b1 with the current state of the input port.

Additionally, note that

let pins = pins

means ‘let the output port equal the input port’

To avoid this confusion it is recommended that the name ‘outpins’ is used is this

type of statement e.g.

let outpins = pins

The variable pins is broken down into individual bit variables for reading from

individual inputs with an if...then command. Only valid input pins are

implemented.

pins = pin7 : pin6 : x : x : x : pin2 : pin1 : pin0

The variable outpins is broken down into individual bit variables for writing

outputs directly. Only valid output pins are implemented.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

58

58

www.picaxe.com

PICAXE-28 / 28A / 28X SFR

pins = the input port when reading from the port

(out)pins = the output port when writing to the port

infra = a separate variable used within the infrain command

keyvalue = another name for infra, used within the keyin command

Note that pins is a ‘pseudo’ variable that can apply to both the input and output

port.

When used on the left of an assignment pins applies to the ‘output’ port e.g.

let pins = %11000011

will switch outputs 7,6,1,0 high and the others low.

When used on the right of an assignment pins applies to the input port e.g.

let b1 = pins

will load b1 with the current state of the input port.

Additionally, note that

let pins = pins

means ‘let the output port equal the input port’

To avoid this confusion it is recommended that the name ‘outpins’ is used is this

type of statement e.g.

let outpins = pins

The variable pins is broken down into individual bit variables for reading from

individual inputs with an if...then command. Only valid input pins are

implemented.

pins = pin7 : pin6 : pin5 : pin4 : pin3 : pin2 : pin1 : pin0

The variable outpins is broken down into individual bit variables for writing

outputs directly. Only valid output pins are implemented.

outpins = outpin7 : outpin6 : outpin5 : outpin4 :

outpin3 : out pin2 : outpin1 : outpin0

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

59

59

www.picaxe.com

PICAXE-28X1 / 40X1 SFR

pins = the input port when reading from the port

outpins = the output port when writing to the port

ptr = the scratchpad pointer

@ptr = the scratchpad value pointed to by ptr

@ptrinc = the scratchpad value pointed to by ptr (post increment)

@ptrdec = the scratchpad value pointed to by ptr (post decrement)

flags = system flags

When used on the left of an assignment ‘outpins’ applies to the ‘output’ port e.g.

let outpins = %11000011

will switch outputs 7,6,1,0 high and the others low.

When used on the right of an assignment ‘pins’ applies to the input port e.g.

let b1 = pins

will load b1 with the current state of the input port.

The variable pins is broken down into individual bit variables for reading from

individual inputs with an if...then command. Only valid input pins are

implemented.

pins = pin7 : pin6 : pin5 : pin4 : pin3 : pin2 : pin1 : pin0

The variable outpins is broken down into individual bit variables for writing

outputs directly. Only valid output pins are implemented.

outpins = outpin7 : outpin6 : outpin5 : outpin4 :

outpin3 : out pin2 : outpin1 : outpin0

The scratchpad pointer variable is broken down into individual bit variables:

ptr = ptr7 : ptr6 : ptr5 : ptr4 : ptr3 : ptr2 : ptr1 : ptr0

See the ‘Variables - Scratchpad’ section for more information about

@ptr, @ptrinc, @ptrdec

The system ‘flags’ byte is broken down into individual bit variables. If the special

hardware feature of the flag is not used in a program the individual flag may be

freely used as a user defined bit flag.

Name Special Special function
flag0 - reserved for future use

flag1 - reserved for future use

flag2 - reserved for future use

flag3 - reserved for future use

flag4 - reserved for future use

flag5 hserflag hserial background receive has occurred

flag6 hi2cflag hi2c write has occurred (slave mode)

flag7 toflag timer overflow flag

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

60

60

www.picaxe.com

PICAXE-20X2 / 28X2 / 40X2 SFR

pinsA -the portA input pins

dirsA - the portA data direction register

pinsB - the portB input pins

dirsB - the portB data direction register

pinsC - the portC input pins

dirsC - the portC data direction register

pinsD - the portD input pins

dirsD - the portD data direction register

bptr - the RAM pointer

@bptr - the byte RAM value pointed to by bptr

@bptrinc - the byte RAM value pointed to by bptr (post increment)

@bptrdec - the byte RAM value pointed to by bptr (post decrement)

ptr - the scratchpad pointer (ptrh : ptrl)

@ptr - the scratchpad value pointed to by ptr

@ptrinc - the scratchpad value pointed to by ptr (post increment)

@ptrdec - the scratchpad value pointed to by ptr (post decrement)

flags - system flags

When used on the left of an assignment ‘pins’ applies to the ‘output’ pins e.g.

let pinsB = %11000000

will switch outputs 7,6 high and the others low.

When used on the right of an assignment ‘pins’ applies to the input pins e.g.

let b1 = pinsB

will load b1 with the current state of the input pin on portB.

The variable pinsX is broken down into individual bit variables for reading from

individual inputs with an if...then command. Only valid input pins are

implemented e.g.

pinsB = pinB.7 : pinB.6 : pinB.5 : pinB.4 :

pinB.3 : pinB.2 : pinB.1 : pinB.0

The variable outpinX is broken down into individual bit variables for writing

outputs directly. Only valid output pins are implemented. e.g.

outpinsB = outpinB.7 : outpinB.6 : outpinB.5 : outpinB.4 :

outpinB.3 : outpinB.2 : outpinB.1 : outpinB.0

The variable dirsX is broken down into individual bit variables for setting inputs/

outputs directly e.g.

dirsB = dirB.7 : dirB.6 : dirB.5 : dirB.4 :

dirB.3 : dirB.2 : dirB.1 : dirB.0

The byte scratchpad pointer variable is broken down into individual bit variables:

bptrl = bptr7 : bptr6 : bptr5 : bptr4 : bptr3 : bptr2 : bptr1 : bptr0

See the ‘Variables - General’ section (manual part 2) for more information about

@bptr, @bptrinc, @bptrdec

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

61

61

www.picaxe.com

The scratchpad pointer variable is broken down into individual bit variables:

ptrl = ptr7 : ptr6 : ptr5 : ptr4 : ptr3 : ptr2 : ptr1 : ptr0

ptrh = xxxx : xxxx : xxxx : xxxx : xxxx : xxxx : ptr9 : ptr8

See the ‘Variables - Scratchpad’ section (manual part 2) for more information

about

@ptr, @ptrinc, @ptrdec

The system ‘flags’ byte is broken down into individual bit variables. If the special

hardware feature of the flag is not used in a program the individual flag may be

freely used as a user defined bit flag.

Name Special Special function
flag0 hint0flag hardware interrupt on pin INT0

flag1 hint1flag hardware interrupt on pin INT1

flag2 hint2flag hardware interrupt on pin INT2

flag3 hintflag hardware interrupt on any pin 0,1,2

flag4 compflag hardware interrupt on comparator

flag5 hserflag hserial background receive has occurred

flag6 hi2cflag hi2c write has occurred (slave mode)

flag7 toflag timer overflow flag

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

62

62

www.picaxe.com

Parallel Task Processing

The M2 educational PICAXE chips support parallel task processing.

A PICAXE microcontroller is a single core controller and can therefore only

process one instruction at any one time. The only exception to this rule is where

the chip also contains a separate on-chip peripheral which runs independently of

the main core. The main example of a separate peripheral is the pwm peripheral,

which is activated via the pwmout command. This generates pulses completely

separately to the main processing task, and so requires none of the core

processing time to keep working in the background.

However the new PICAXE microcontroller educational range (M2 parts) can now

simulate ‘parallel processing’ by repeatedly switching between a number of tasks

at very high speed. This is made possible by the increased operating speeds of the

newer parts - for instance running 4 tasks at 16MHz is approximately equal to

running one task at 4MHz. All tasks therefore ‘appear’ to be processed in parallel.

Parallel tasks are designed for educational use to simplify programming by

younger students. This is best demonstrated by example.

A student wants to build a bicycle alarm. Every 5 seconds an LED briefly flashes

to indicate the alarm is active. However when the chain (wire) is cut a buzzer

must immediately sound.

The student’s first attempt at programming is shown in flowchart 1 above. This is

the obvious solution, but does not work as expected. This is because the alarm

does not sound immediately when the wire is cut - as the input is only checked

once every 5 second there can be up to 5 seconds ‘lag’ before the alarm sounds.

The correct single task solution is to break the large 5 second delay into much

smaller ‘chunks’ e.g. 50 loops of 0.1s (100ms) as shown in flowchart 2 overleaf.

Therefore the input is checked much more frequently and the alarm sounds

almost instantaneously. However this solution is not so easy to understand and

most students will not initially reach this solution without teacher guidance.

start0:

pause 5000

if pinC.2 = 1 then alarm

high B.1

pause 500

low B.1

goto start0

alarm:

high B.3

goto alarm

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

63

63

www.picaxe.com

start0:

for b4 = 1 to 50

 pause 100

 if pinC.2 = 1 then alarm

next b4

high B.1

pause 500

low B.1

goto start0

alarm:

high B.3

goto alarm

start0:

pause 5000

high B.1

pause 500

low B.1

goto start0

start1:

if pinC.2 = 1 then alarm

goto start1

alarm:

high B.3

goto alarm

Flowchart 3 below shows a simpler way to achieve the correct outcome using

parallel tasks. Task 1 simply flashes the LED whilst task 2 checks the switch. In

this solution the input is detected even faster than with the single task solution

above. This parallel task solution is also generally easier for students to

understand than flowchart 2.

How Parallel Tasks Operate.
All M2 parts can operate in single task mode or parallel task mode. In single task

mode the M2 part operates as a traditional PICAXE part and follows the program

sequentially (line by line) as expected.

By inclusion of additional ‘start’ labels within the user flowchart/BASIC program

the compiler automatically switches the downloaded program into parallel task

mode instead. In parallel task mode there are two (or more) program start

positions and the PICAXE chip starts all tasks after a reset.

The commands are processed in a circular manner, for example with two tasks the

first command in task 0 is processed, then the first command in task 1 is

processed, then the second command in task 0 is processed and so on. Therefore

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

64

64

www.picaxe.com

the processing core ‘cycles’ between the different tasks. During task ‘dead’

processing time (e.g. during delays such as within a pause command) the core

automatically realises that there is no current processing to be carried out within

that task and moves immediately onto the next task. Therefore the response of

another task is not affected by a pause delay.

All variables/user RAM/EEPROM are shared between all tasks. Therefore, if

required, tasks can interact and influence each other’s behaviour by transferring

data in particular bytes.

Multi task mode labels
Each task can be any length. The only restriction is that all tasks must fit in the

total program memory area of that M2 chip.

The start (“top”) of the program is always task 0. This is the first task that is

started when the chip is reset. If desired an optional ‘start0:’ label may be used,

but this is also implied by default if not used. If used, ‘start0:’ must always be on

the very first line of program code.

Within BASIC programs the second task, task 1, is indicated by use of the ‘start1:’

label. Likewise task 2 is indicated by ‘start2:’ and so on. Within Logicator

flowcharts a new ‘start’ cell is simply dragged onto the flowchart to indicate the

new start positions.

The compiler automatically recognises the extra ‘start’ labels and therefore

switches the part into multi-task mode upon the new program download.

Each task has its own program counter and stack. Therefore sub-procedures can

be shared between different tasks if required, however this is not generally

recommended. There is one interrupt (setint command) which will interrupt all

current tasks.

Suspending tasks
It is possible to disable tasks during the program by use of the ‘suspend’

command. A suspended task can later be resumed by a ‘resume’ command within

a different task.

The task currently being processed is stored in a special user variable called ‘task’.

The ‘task’ variable is updated very time the core switches to a new task. Therefore

the command ‘suspend task’ will always suspend the current task. To have a

particular task suspended at reset simply make sure that ‘suspend task’ is the first

command within that task.

Take care not to suspend all tasks at the same time, or no processing will take

place! A particular task can also be restarted by using the ‘restart’ command. Note

that ‘restart’ does not reset the entire chip (use the ‘reset’ command to do this), so

variables etc. are not cleared by the ‘restart’ command.

‘Sleep’ and ‘nap’ commands switch off the core and place the chip into low power

mode. Therefore a nap or sleep command within any task will suspend all of the

tasks.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

65

65

www.picaxe.com

BASIC simulation
When simulating BASIC or Flowchartsthe ‘PICAXE Editor’ software process all

tasks in parallel as expected, but only normally ‘traces’ (highlights on screen) the

BASIC code for one task at a time to avoid confusion. Task 0 is traced by default,

however a different task can be traced by including a ‘#simtask X’ directive within

the program. This directs the software to trace task X instead. ‘#simtask all’ is also

accepted and will rapidly highlight the line being processed in each task, which

can be confusing to watch!

Limitations.
Parallel tasking is primarily designed for simpler educational projects. It works

very well using simple input/output commands and programs that contain pause

commands within the tasks. This covers the vast majority of school educational

projects.

Parallel tasking is not designed for complex parallel tasks with each task trying to

use different advanced features simultaneously e.g. trying to use serial / infra-red /

1-wire communication protocols simultaneously in 3 different tasks! In this

situation the end user should use a single core program to process each advanced

feature in turn.

Commands that require total core processing to maintain critical timing integrity

(e.g. readtemp, sertxd, debug, serin, irin etc.) will ‘block’ the parallel tasking until

that command has finished/timed out. Therefore the other tasks will appear to

momentarily ‘hang’ during the processing of that command.

Due to the task cycling the timing between each command in a particular task

cannot be guaranteed, because different length commands within the other tasks

will be processed in the interval. This also means that the accuracy of pause

commands will be slightly decreased. If a program specifically requires high

timing accuracy a single task should be used instead.

The ‘setfreq’ command is not available in parallel task programs, as the core will

automatically switch the frequency as required to maintain a high parallel task

processing speed. However most commands will ‘appear’ to be operating at

4MHz, so commands such as pulsout/pulsin, serout/serin, count etc. should be

calibrated as for 4MHz operation. Background servo pulsing will continue to

operate, but may have a decreased accuracy with occasional ‘twitches’. The change

in background frequency may also affect background pwm pulse generation, so it

is recommended that single task mode is used for programs containing pwmout

commands.

Processing multiple tasks is much more complex than a single task and so in

parallel task mode the core requires use of additional dedicated RAM memory.

Therefore, on the 18M2 in parallel task mode only, bytes 128 to 255 of the user

RAM are reserved as additional RAM for use by the core. Bytes 0-127 are still

available to the end user via peek/poke commands. In parallel task mode the byte

pointer (bptr) on the 18M2 will therefore overflow back to 0 after 127 (it

overflows at 255 in single task mode). This does not apply to other M2 chips (e.g.

14M2, 18M2+, 20M2) as the silicon of these later developed chips was designed

to include more RAM for this purpose.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

66

66

www.picaxe.com

Flowchart or BASIC?

The PICAXE Editor and AXEpad software support textual BASIC programming.

The PICAXE Editor 6 software also provides a graphical flowchart method of

programming. Logicator, as widely used within schools, is now fully merged into

PICAXE Editor 6. So PICAXE Editor now replaces ‘Logicator’, the one

appplication now serves both programming methods.

All programming methods use the same BASIC commands and syntax. The

flowchart method simply provides a graphical way of joining the BASIC

commands together, to save typing in programs. Flowcharting uses a smaller sub-

set of the BASIC commands, and is generally used by younger students in the

educational environment.

One advantage of flowchart programming is the very graphical on-screen

simulation. This allows students to ‘see’ their program in operation before

downloading to the PICAXE.

Most hobbyist and experienced educational users prefer the textual BASIC

method of programming. It is much more powerful than flowcharts, which can

become very complicated for large programs.

All flowcharts are automatically converted into BASIC programs prior to

download to the PICAXE microcontroller. Therefore the main focus of this

manual is on textual BASIC programming.

Flowcharts are described in part4 of the manual.

main:

low B.1

high B.3

pause 500

high B.1

low B.3

pause 500

goto main

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

67

67

www.picaxe.com

BASIC Simulation

When a BASIC program has been entered, the simulation is started by clicking the

Simulate >Run menu (or pressing <Ctrl> + <F5>)

The Simulation Panel should always be displayed during a simulation, but varies

in appearance according to how it is configured under the Workspace Explorer >

Settings tab. Various animating simulation diagrams can be selected.

Input/Outputs are coloured as yellow and green accordingly. When they are a

dark colour they are off (=0), when a lighter colour they are on (=1).

To change an input condition simply click on the coloured area on the

Simulation drawing. Bright yellow indicates a logic level 1 (on).

Analogue input values are shown in a grid on the second tab. and can be

altered by the scroll up/down buttons or by typing over the value directly (0-

255). Byte are values used by the ‘readadc’ command and other commands

that use a byte value.

The ‘word’ value operates in a similar manner (0-65535) and is used by the

following commands as the input value:

count, pulsin, readadc10, readtemp, readtemp12 etc.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

68

68

www.picaxe.com

Program Flow Control and Breakpoints
The buttons on the main simulation ribbon are shortcut buttons for all the main

Simulation functions.

Breakpoints can be placed in (removed from) the program by simply clicking

over the line number in the margin. Alternatively the Breakpoints > Toggle

breakpoint menu may be used to insert/remove a breakpoint at the current cursor

position. Breakpoints are indicated by a red flag in the margin.

To single step a program place a breakpoint on the first line you

want to study and then click Run. Alternately right click on Run

instead of left click.

Simulation Panel
To change an input value click on the leg within the chip image

layout.

The Values tab is used to enter data for commands such as

readadc, count, pulsin etc.

Numeric breakpoints can be set by using the Watch tab.

Code Explorer - Variables
The variables panel shows the current byte (b0, b1 etc) or word

(w0, w1 etc) variable values. It also shows any constants or

labels used in the program.

Memory Panel
The memory panel displays the current values of the data

EEPROM or SFR or scratchpad memory areas. To change a

variable value double click over the corresponding RAM address

whilst the program is paused. You can then enter a new value.

 Serial Output Panel
The serial output panel displays output from the serout and

sertxd commands. Debug commands are not simulated because

the variable values are always available in the ‘variables’ panel.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

69

69

www.picaxe.com

Simulation Run Delay
The slider (bottom right of the screen, in the main status bar) sets the visual time

delay over each line as the program is simulated.

Simulation Options

Use File>Options>Simulation tab to select the various simulation options such

as:

Highlight Labels

This option highlights and delays over labels that are on a line by themselves.

This slows down the simulation but enables the user to clearly see which label

has been jumped to.

Simulate LCD

Serout commands on the selected output will display a simulated LCD panel.

This simulation matches the standard AXE033 or FRM010 serial LCD commands

(custom characters, AXE033 clock and AXE033 alarm functions are not

simulated).

 Simulate EEPROM

Adds a simulated 24LC16B or 24LC256 EEPROM for i2c commands.

Simulate DS1307 RTC

Adds a simulated DS1307 real time clock for i2c commands. Time and date

register reads use the values from the computers internal clock. Writes to change

these time/date registers are ignored under simulation.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

70

70

www.picaxe.com

Interfacing Circuit Summary

This section provides a very brief overview of input/output interfacing to the

PICAXE microcontroller. For more detailed explanations see section 3 of the

manual - Interfacing Circuits. Section 3 provides detailed connection diagrams

and sample programs for most common input / output transducers.

Digital Outputs
The microcontroller can sink or

source 20ma on each output pin,

maximum 90mA per chip. Therefore

low current devices such as LEDs can

be interfaced directly to the output

pin. Higher current devices can be

interfaced via a transistor, FET or

darlington driver array.

Digital Inputs
Digital input switches can be

interfaced with a 10k pull down

resistor. The resistor is essential as it

prevents the input ‘floating’ when the

switch is in the open position. This

would give unreliable operation.

Note the 10k resistor is pre-fitted to

the project board inputs.

Analogue Inputs
Analogue inputs can be connected in a

potential divider arrangement between V+

and 0V. The analogue reference is the

supply voltage, and the analogue signal

must not exceed the supply voltage.

@

������

&�

��

��

����

������	�
�	�

������

����	�
�

 ��

&�

��

������

�*�	�
�

�

��

�����B��

����

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

71

71

www.picaxe.com

Tutorial 1 – Understanding and using the PICAXE System

The PICAXE chip, the ‘brain’ of the PICAXE system, when supplied new without a

control program, does not do anything! The user must write a control program

on the computer, and then download this program into the PICAXE chip.

Therefore the PICAXE system consists of three main components:

The ‘PICAXE Editor’ software
This software runs on a computer and allows you to use the computer keyboard

to type in programs in a simple BASIC language. Programs can also be generated

by drawing flowcharts. Alternately third party software applications may be used

(e.g. ‘Flowol’ or ‘Yenka’ software may be used to simulate complete PICAXE

electronic circuits, programmed via flowcharts).

The AXE027 USB Download Cable
This is the cable that connects the computer to the PICAXE system. The cable

only needs to be connected when downloading programs. It does not have to be

connected when the PICAXE is running because the program is permanently

stored on the PICAXE chip – even when the power supply is removed!

The PICAXE chip and board
The PICAXE microcontroller chip ‘runs’ program that have been downloaded to

it. However the chip needs to be mounted on an electronic board that provide

connection to the microcontroller chip.

The electronic board can be designed by the user on a piece of stripboard or

printed circuit board, or a pre-made interface or tutorial board may be used for

speed and convenience.

Summary - Programming Procedure
1. Write the program on the computer using the PICAXE Editor software.

2. Connect the download cable from the computer to the PICAXE.

3. Connect the power supply to the PICAXE board.

4. Use the PICAXE Editor software to download the program. The download

cable can then be removed after the download.

The program will start running on the PICAXE automatically. However the

program can also be restarted at any time by pressing the reset switch (if

available) or by cycling the power off and back on.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

72

72

www.picaxe.com

Input / Output Pin Naming Conventions

The first PICAXE chips had a maximum of 8 input and 8 output pins, so there

was no need for a port naming scheme, as there was only one default input port

and one default output port for each chip.

Therefore input and outputs pins were just referred to by their pin number

e.g. Output commands Input Commands

high 1 count 2, 100, w1

sound 2, (50,50) pulsin 1, 1, w1

serout 3, N2400, (b1) serin 0, N2400, b3

However on later M2 and X2 PICAXE parts more flexibility was added by

allowing almost all of the pins to be configured as inputs or outputs as desired.

This creates more than 8 inputs or outputs and an amended naming scheme is

therefore required. Therefore the pins on these parts are referred to by the new

PORT.PIN notation. Up to 4 ports (A, B, C, D) are available, depending on chip

pin count.

e.g. Output commands Input Commands

high B.1 count A.2, 100, w1

sound C.2, (50,50) pulsin B.1, 1, w1

serout A.3, N2400, (b1) serin C.0, N2400, b3

In the case of if...then statements which check the status of the input pin variable,

the naming convention of these input pin variables have changed in a similar

style from

if pin1 =1 then...

to

if pinC.1 = 1 then...

The name of the input pins byte for each port is changed from

pins

to

pinsA, pinsB, pinsC, pinsD

The name of the output pins byte for each port is changed from

outpins

to

outpinsA, outpinsB, outpinsC, outpinsD

The name of the data direction register for each port is changed from

dirs

to

dirsA, dirsB, dirsC, dirsD

This manual generally uses the newer PORT.PIN format in the examples unless an

example is specifically for an older part.

Please see the pinout diagrams for the chip you are using. Note that input /

output pin numbers used within commands are not the same as the physical leg

numbers!

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

73

73

www.picaxe.com

Downloading a BASIC program
The following program switches output 4 on and off every second. When you

download this program the LED should flash on and off every second.

main:

high B.4

pause 1000

low B.4 +

pause 1000

goto main

This program uses the high and low commands to control output pin 4, and uses

the pause command to make a delay (1000 ms = 1 second).

The last goto main command makes the program ‘jump’ back to the label main:
at the start of the program. This means the program loops forever. Note that the

first time the label is used it must be followed by the colon (:) symbol. This tells

the computer the word is a new label.

Detailed instructions:
1. Connect the PICAXE cable to the computer

serial / USB port. Note which COM port it is

connected to.

1. Start the PICAXE Editor software.

2. Select Workspace Explorer - Settinsg tab.

3. Select the appropriate PICAXE chip.

4. Select the virtual COM port that the PICAXE

cable is connected to. Click ‘OK’

5. Type in the following program:

main:

high B.4

pause 1000

low B.4

pause 1000

goto main

(NB note the colon (:) directly after the label

‘main’ and the spaces between the commands

and numbers)

6. Connect an LED (and 330R resistor) to output pin 4. If connecting the LED

directly to a PICAXE chip on a proto (or home-made) board, connect the

LED between the output pin and 0V. When using the project boards (as

supplied within the 14, 18 and 28 starter packs), connect the LED between
V+ and the output connector, as the output is buffered by the darlington

driver chip on the project board. (Make sure the LED is connected the correct

way around!).

7. Make sure the PICAXE circuit is connected to the serial cable, and that the

batteries are connected.

8. Select PICAXE>Program. A download bar should appear as the program

downloads. When the download is complete the program will start running

automatically – the LED should flash on and off every second.

��

����

������	�
�	�

�

����

�������	�����
������	�

�������
��

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

74

74

www.picaxe.com

Simulating a BASIC program

To simulate the program simply click the Simulate>Run button. Each line of the

BASIC code will be highlighted as it is processed, and an on-screen simulation

panel shows the status of all input and output pins.

To change the status of an input simply click on the input button which is beside

the corresponding leg of the chip on the graphic.

.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

75

75

www.picaxe.com

Tutorial 2 - Using Symbols, Comments & White-space

Sometimes it can be hard to remember which pins are connected to which

devices. The ‘symbol’ command can then be used at the start of a program to

rename the inputs and outputs.

symbol LED = B.4 ; rename output4 ‘LED’

symbol buzzer = B.2 ; rename output2 ‘buzzer’

main: ; make a label called ‘main’

high LED ; LED on

low buzzer ; buzzer off

pause 1000 ; wait 1 second (1000 ms)

low LED ; LED off

high buzzer ; buzzer on

wait 1 ; wait 1 second

goto main ; jump back to the start

Remember that comments (an explanation after the ; symbol) can make each

line of a program much easier to understand. These comments are ignored by the

computer when it downloads a program to the PICAXE

A label (e.g. main: in the program above) can be any word (apart from keywords

such as ‘switch’), but must begin with a letter. When the label is first defined it

must end with a colon (:). The colon ‘tells’ the computer that the word is a new

label.

This program uses the wait command. The commands wait and pause both

create time delays. However wait can only be used with whole seconds, pause can

be used for shorter time delays (measured in milliseconds (1000th of a second)).

Wait can be followed by a number between 1 and 65.

Pause can be followed by a number between 1 and 65535.

It is also a good programming technique to use tabs (or spaces) at the start of

lines without labels so that all the commands are neatly aligned. The term ‘white-
space’ is used by programmers to define tabs, spaces and blank lines, and the

correct use of white-space can make the program listing much easier to read and

understand. See the example program on the next page, where code between the

for...next commands is also indented with a tab for clarity.

Note:

Some early BASIC languages used ‘line numbers’ rather than labels for ‘goto’

commands. Unfortunately this line number system can be inconvenient to use,

because if you modify your program by later adding, or removing, lines of code

you then have to modify all the line numbers within the ‘goto’ commands

accordingly. The label system, as used in most modern BASIC languages,

overcomes this problem automatically.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

76

76

www.picaxe.com

Tutorial 3 - For…Next Loops

It is often useful to repeat the same part of a program a number of times, for

instance when flashing a LED. In these cases a for…next loop can be used.

This program flashes the LED connected to output pin 1 on and off 15 times. The

number of times the code has been repeated is stored in the general purpose

RAM memory of the PICAXE chip using variable b1 (the PICAXE contains 14

general purpose byte variables labelled b0 to b13). These variables can also be

renamed using the symbol command to make them easier to remember.

symbol counter = b1 ; define the variable b1 as “counter”

symbol LED = B.4 ; define pin 4 with the name “LED”

main:

for counter = 1 to 15 ; start a for...next loop

high LED ; switch pin 4 high

pause 500 ; wait for 0.5 second

low LED ; switch pin 4 low

pause 500 ; wait for 0.5 second

next counter ; end of for...next loop

end ‘ end program

Note again how white-space (extra spaces) has been used to clearly show all the

commands that are contained between the for and next commands.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

77

77

www.picaxe.com

Tutorial 4 - Making Sounds

Buzzers will make a fixed frequency noise when switched on.

However the PICAXE system can automatically create noises of

different frequencies by use of the sound, play and tune

commands with a piezo sounder. All PICAXE chips support the

sound command, which is designed to make warning ‘beeps’ etc.

This is recommended instead of using buzzers.

To play musical tunes, the sound command is not

recommended. Some PICAXE chips support the play and tune

commands, specifically designed for playing musical tunes.

Refer to the ‘Tune’ command in part 2 of the manual for more

details.

Example sound program:

main:

sound B.2,(50,100) ; freq 50, length 100

sound B.2,(100,100) ; freq 100, length 100

sound B.2,(120,100) ; freq 120, length 100

pause 1000 ; wait 1 second

goto main ; loop back to start

To test this program you must add a piezo sounder between the output pin (in

this case output 2) and 0V. Note that on the project boards (supplied in the

PICAXE-14, 18 and 28 starter packs) fitted with a Darlington driver the piezo

must be connected directly to the PICAXE output pin (not the buffered output

connection).

The first number provides the pin number (in this case output 2). The next

number (in brackets) is the tone, followed by the duration. The higher the tone

number the higher pitch the sound (note that only valid tones are 0 to 127).

The following program uses a for…next loop to produce 120 different sounds.

main:

for b0 = 1 to 120 ; start a for...next loop

 sound B.2,(b0,50) ; make a sound, freq from b0

next b0 ; next loop

end

The number stored in variable b0 increase by 1 in every loop (1-2-3 etc.)

Therefore by using the variable name b0 in the tone position, the note can be

changed on each loop.

The following program does the same task but backwards, by using step value of -

1 (rather than the default of +1 as above).

main:

for b0 = 120 to 1 step -1 ; count down in loop

 sound B.2,(b0,50) ; make a sound. freq from b0

next b0 ; next loop

end

�
�

��

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

78

78

www.picaxe.com

Tutorial 5 – Using Digital Inputs

A digital sensor is a simple ‘switch’ type sensor that can only be

‘on’ or ‘off’.

Common examples of a digital sensor are:

• microswitches

• push and rocker switches

• reed switches

This program below shows how to react to switch pushes. In this program output

pin 4 flashes every time the push switch on input pin 3 is pushed. Note that if

using an 18 pin chip you should select a different input pin (e.g. pin0, as pin3

does not exist on this size chip).

main: ; make a label called ‘main’

if pinC.3 = 1 then flash ; jump if the input is on

goto main ; else loop back around

flash: ; make a label called ‘flash’

high B.4 ; switch output 4 on

pause 2000 ; wait 2 seconds

low B.4 ; switch output 4 off

goto main ; jump back to start

In this program the first three lines make up a continuous loop.

If the input is off (=0) the program just loops around time and

time again. If the switch is on (=1) the program jumps to the

label called ‘flash’. The program then flashes output 4 on for two

seconds before returning to the main loop.

Note carefully the spelling in the if…then line – pin3 is all one

word (without a space). This is because pin3 is the name of a variable that

contains the data from the input pin. Note also that only the label is placed after

the command then.

Two switches (or more) can be combined by the AND or OR key words.

A 2-input AND gate is programmed as

if pinC.2 = 1 and pinC.3 = 1 then flash

A 3-input OR gate is programmed as

if pinC.1 = 1 or pinC.2 = 1 or pinC.3 = 1 then flash

To read the whole input port use the following command

let b1 = pinsC

To isolate individual pins (e.g. 6 and 7) within the port, mask the pins variable

with an & (logical AND) statement

let b1 = pinsC & %11000000

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

79

79

www.picaxe.com

Tutorial 6 – Using Analogue Sensors

An analogue sensor

measures a continuous

signal such as light,

temperature or position. The

analogue sensor provides a

varying voltage signal. This

voltage signal can be

represented by a number in

the range 0 and 255 (e.g.

dark = 0, light = 255).

Common examples of analogue sensors are:

• LDR (Light Dependent Resistor)

• Thermistor

• Variable Resistor (potentiometer)

Using a Light Dependent Resistor (LDR)
The LDR is an example of an analogue sensor. It is

connected to the PICAXE ADC input in a potential divider

arrangement (e.g. input 1). Note that not all inputs have

ADC capabilities - see the pinout diagrams for more

information.

The value of an analogue input can be easily copied into a

variable by use of the ‘readadc’ command. The variable

value (0 to 255) can then be tested. The following program

switches on one LED if the value is greater than 120 and a

different LED if the value is less than 70. If the value is

between 70 and 120 both LEDS are switched off.

main: ; make a label called ‚main

readadc C.1,b0 ; read ADC1 into variable b0

if b0 > 120 then top ; if b0 > 120 then do top

if b0 < 70 then bot ; if b0 < 70 then do bot

low B.0 ; else switch off 0

low B.4 ; and switch off 4

goto main ; jump back to the start

top: ; make a label

high B.0 ; switch on 0

low B.4 ; switch off 4

goto main ; jump back to start

bot: ; make a label

high B.4 ; switch on 4

low B.0 ; switch off 0

goto main ; jump back to start

��

&�

7
)�

�
��
��
B�

����

�
B(�

 ��

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

80

80

www.picaxe.com

Tutorial 7 - Using Debug

When using analogue sensors it is often necessary to calculate the ‘threshold’

value necessary for the program (ie the values 70 and 120 in the tutorial 6

program). The debug command provides an easy way to see the ‘real-time’ value

of a sensor, so that the threshold value can be calculated by experimentation.

main: ; make a label called main

readadc C.1,b0 ; read channel 1 into variable b0

debug b0 ; transmit value to computer screen

pause 500 ; short delay

goto main ; jump back to the start

After this program is run a ‘debug’ window showing the value of variable b0 will

appear on the computer screen. As the Light falling on the LDR sensor is altered,

the variable value will show the current sensor reading.

The debug window opens automatically after a download, but can also be

opened manually at any time via the Code Explorer Debug button.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

81

81

www.picaxe.com

Tutorial 8 - Using Serial Terminal with Sertxd

All PICAXE variants support the debug command. However the M and X parts

also support more complex serial debug messages by use of the sertxd command,

which sends a user defined serial string to the computer (at baud rate 4800). This

can be displayed by the included Serial Terminal function (PICAXE>Terminal

menu). The Serial Terminal can also be automatically opened every time a

download takes place by the View>Options>Options menu.

main: ; make a label called main

readtemp C.1,b0 ; read input 1 into variable b0

sertxd (“The value is “,#b0,cr,lf)

pause 500 ; short delay

goto main ; jump back to the start

The sertxd command transmits the string “The value is” followed by the ASCII

string of the current value of the variable b1 (the # prefix to the variable indicates

an ASCII string representing the correct value is to be transmitted). The CR and LF

constants are pre-defined values (13 and 10) that cause the serial terminal to

display a newline for each value so that the display updates correctly.

This program uses the readtemp command to read the temperature from a

DS18B20 digital temperature sensor connected to input 1.

*/ 0+��

&�

��

�
��
�
�
�

��)��������
������

��$

�

��

����
�
�

�

����
��

<+E)���	�������	������
���	���;2
����	"
�(�	����;
��"�	���
����	��	�(�	
����
�
�6	7(
�)���	��	��)�!��
��	���	�(�	��)�6	������6

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

82

82

www.picaxe.com

Tutorial 9 - Number Systems

A microcontroller operates by performing a large number of commands in a very

short space of time by processing electronic signals. These signals are coded in the

binary system – the signal either being high (1) and low (0)

The counting system used in everyday activities is the decimal system. This

number system uses the ten familiar digits 0 to 9 to explain how big or small the

number is.

However when working with microcontrollers it is sometimes easier to work in

binary. This is especially true when trying to control multiple outputs at the same

time.

A single binary digit is referred to a bit (binary digit). The PICAXE systems use 8

bits (1 byte), with the least significant bit (LSB), bit 0, on the right hand side and

the most significant bit (MSB), bit 7, on the left hand side.

Therefore the binary number %11001000 means set bits 7,6,3 high (1) and the

others low (0). The % sign tells the computer you are working in binary instead

of decimal.

This means that all 8 outputs can be controlled at the same time, instead of

multiple high and low commands. The following program demonstrates how to

make the seven segment display on the AXE050 tutorial board count from 0 to 9.

main:

let pinsB = %00111111 ; digit 0

pause 250 ; wait 0.25 second

let pinsB = %00000110 ; digit 1

pause 250 ; wait 0.25 second

let pinsB = %01011011 ; digit 2

pause 250 ; wait 0.25 second

let pinsB = %01001111 ; digit 3

pause 250 ; wait 0.25 second

let pinsB = %01100110 ; digit 4

pause 250 ; wait 0.25 second

let pinsB = %01101101 ; digit 5

pause 250 ; wait 0.25 second

let pinsB = %01111101 ; digit 6

pause 250 ; wait 0.25 second

let pinsB = %00000111 ; digit 7

pause 250 ; wait 0.25 second

let pinsB = %01111111 ; digit 8

pause 250 ; wait 0.25 second

let pinsB = %01101111 ; digit 9

pause 250 ; wait 0.25 second

goto main

Each ‘let pins=’ line changes the number of bars that are lit on the seven segment

display on the tutorial board. This is quicker, and more memory efficient, than

using lots of ‘high’ and ‘low’ commands.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

83

83

www.picaxe.com

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

84

84

www.picaxe.com

Tutorial 10 - Sub-procedures

A sub-procedure is a separate ‘mini-program’ that can be called from the main

program. Once the sub-procedure has been carried out the main program

continues.

Sub-procedures are often used to separate the program into small sections to

make it easier to understand. Sub-procedures that complete common tasks can

also be copied from program to program to save time.

The X part PICAXE microcontrollers support 255 sub-procedures. All other parts

support 15 sub-procedures.

The following program uses two sub-procedures to separate the two main

sections of the program(‘flash’ and ‘noise’).

symbol LED = B.4 ; rename output4 ‘LED’

symbol buzzer = B.2 ; rename output2 ‘buzzer’

symbol counter = b1 ; define a counter using variable b1

main: ; make a label called ‘main’

gosub flash ; call the sub-procedure flash

gosub noise ; call the sub-procedure noise

goto main ; loop back

end ; end of the main program

flash: ; make a sub-procedure called flash

for counter = 1 to 25 ; start a for…next loop

 high LED ; LED on

 pause 50 ; wait 0.05 second

 low LED ; LED off

 pause 50 ; wait 0.05 second

next counter ; next loop

return ; return from the sub-procedure

noise:

high buzzer ; buzzer on

pause 2000 ; wait 2 seconds

low buzzer ; buzzer off

return ; return from the sub-procedure

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

85

85

www.picaxe.com

This second program shows how a variable can be used to transfer information

into a sub-procedure. In this case variable b2 is used to tell the microcontroller to

flash 5, and then 15, times.

symbol LED = B.4 ; rename output4 ‘LED’

symbol counter = b1 ; define a counter using variable b1

main: ; make a label called ‘main’

let b2 = 5 ; preload b2 with 5

gosub flash ; call the sub-procedure flash

pause 500 ; wait a while

let b2 = 15 ; preload b2 with 15

gosub flash ; call the sub-procedure flash

pause 500 ; wait a while

goto main ; loop back

end ; end of the main program

flash: ; make a sub-procedure called flash

for counter = 1 to b2 ; start a for…next loop

 high LED ; LED on

 pause 250 ; wait 0.25 second

 low LED ; LED off

 pause 250 ; wait 0.25 second

next counter ; next loop

return ; return from the sub-procedure

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

86

86

www.picaxe.com

Tutorial 11 - Using Interrupts

An interrupt is a special case of a sub-procedure. The sub-procedure immediately

occurs when a particular input (or combination of inputs) is activated.

A polled interrupt is a quicker way of reacting to a particular input combination.

It is the only type of interrupt available in the PICAXE system. The inputs port is

checked between execution of each command line in the program, between each

note of a tune command, and continuously during any pause command. If the

particular inputs condition is true, a ‘gosub’ to the interrupt sub-procedure is

executed immediately. When the sub-procedure has been carried out, program

execution continues from the main program.

The interrupt inputs condition is any pattern of ‘0’s and ‘1’s on the input port,

masked by the byte ‘mask’. Therefore any bits masked by a ‘0’ in byte mask will be

ignored.

e.g.

to interrupt on input1 high only

setint %00000010,%00000010

to interrupt on input1 low only

setint %00000000,%00000010

to interrupt on input0 high, input1 high and input 2 low

setint %00000011,%00000111

etc.

Only one input pattern is allowed at any time. To disable the interrupt execute a

SETINT command with the value 0 as the mask byte.

Notes:

1) Every program which uses the SETINT command must have a corresponding

interrupt: sub-procedure (terminated with a return command) at the bottom

of the program.

2) When the interrupt occurs, the interrupt is permanently disabled. Therefore to

re-enable the interrupt (if desired) a SETINT command must be used within

the interrupt: sub-procedure itself. The interrupt will not be enabled until the

‘return’ command is executed.

3) If the interrupt is re-enabled and the interrupt condition is not cleared within

the sub-procedure, a second interrupt may occur immediately upon the return

command.

4) After the interrupt code has executed, program execution continues at the

next program line in the main program. In the case of the interrupted pause,

wait, play or tune command, any remaining time delay is ignored and the

program continues with the next program line.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

87

87

www.picaxe.com

More detailed SETINT explanation.

The SETINT must be followed by two numbers - a ‘compare with value’ (input)

and an ‘input mask’ (mask) in that order. It is normal to display these numbers in

binary format, as it makes it more clear which pins are ‘active’. In binary format

input7 is on the left and input0 is on the right.

The second number, the ‘input mask’, defines which pins are to be checked to see

if an interrupt is to be generated ...

- %00000001 will check input pin 0

- %00000010 will check input pin 1

- %01000000 will check input pin 6

- %10000000 will check input pin 7

- etc

These can also be combined to check a number of input pins at the same time...

- %00000011 will check input pins 1 and 0

- %10000100 will check input pins 7 and 2

Having decided which pins you want to use for the interrupt, the first number

(inputs value) states whether you want the interrupt to occur when those

particular inputs are on (1) or off (0).

Once a SETINT is active, the PICAXE monitors the pins you have specified in

‘input mask’ where a ‘1’ is present, ignoring the other pins.

An input mask of %10000100 will check pins 7 and 2 and create a value of

%a0000b00 where bit ‘a’ will be 1 if pin 7 is high and 0 if low, and bit ‘b’ will be

1 if pin 2 is high and 0 if low.

The ‘compare with value’, the first argument of the SETINT command, is what

this created value is compared with, and if the two match, then the interrupt will

occur, if they don’t match then the interrupt won’t occur.

If the ‘input mask’ is %10000100, pins 7 and 2, then the valid ‘compare with

value’ can be one of the following ...

- %00000000 Pin 7 = 0 and pin 2 = 0

- %00000100 Pin 7 = 0 and pin 2 = 1

- %10000000 Pin 7 = 1 and pin 2 = 0

- %10000100 Pin 7 = 1 and pin 2 = 1

So, if you want to generate an interrupt whenever Pin 7 is high and Pin 2 is low,

the ‘input mask’ is %10000100 and the ‘compare with value’ is %10000000,

giving a SETINT command of ...

- SETINT %10000000,%10000100

The interrupt will then occur when, and only when, pin 7 is high and pin 2 is

low. If pin 7 is low or pin 2 is high the interrupt will not happen as two pins are

‘looked at’ in the mask.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

88

88

www.picaxe.com

Example:

setint %10000000,%10000000

‘ activate interrupt when pinC.7 only goes high

main:

low B.1 ; switch output 1 off

pause 2000 ; wait 2 seconds

goto main ; loop back to start

interrupt:

high B.1 ; switch output 1 on

if pinC.7 = 1 then interrupt ; loop here until the

; interrupt cleared

pause 2000 ; wait 2 seconds

setint %10000000,%10000000 ; re-activate interrupt

return ; return from sub

In this example an LED on output 1 will light immediately the

input is switched high. With a standard if pin7 =1 then.... type

statement the program could take up to two seconds to light the

LED as the if statement is not processed during the pause 2000

delay time in the main program loop (standard program shown

below for comparison).

main:

low B.1 ; switch output 1 off

pause 2000 ; wait 2 seconds

if pinC.7 = 1 then sw_on

goto main ; loop back to start

sw_on:

high B.1 ; switch output 1 on

if pinC.7 = 1 then sw_on

; loop here until the condition is cleared

pause 2000 ; wait 2 seconds

goto main ; back to main loop

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

89

89

www.picaxe.com

The next step - your own PICAXE project!

You should now have a good idea about how the PICAXE system works and

should be able to start designing your own project.

Make sure you also study sections 2 (BASIC Commands) and 3 (Microcontroller

Interfacing Circuits) of the manual for additional information.

There are a large range of project ideas and examples within the Help files of the

PICAXE Editor software. Studying these exemplar projects will provide further

ideas, as will looking at the very active forum within the technical support section

of the main PICAXE website (www.picaxe.forum.co.uk). The forum has a very

large community of helpful PICAXE enthusiasts who can always lend a hand if

you are struggling with a project!

There is no limit to how creative PICAXE users can be! Have a go at your own

project, you might be surprised how quickly you can start developing exciting

microcontroller based electronic projects!

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

90

90

www.picaxe.com

Appendix A – BASIC Commands Summary

This appendix provides an overview of available commands. Refer to section 2 of

the manual for more specific information and examples for each BASIC

Command

Output high, low, toggle, pulsout, let pins = ,

Input if...then, if portA…then, if portC then…, pulsin, button,

Counting count

ADC readadc, readadc10

Portc config. let dirsc =

Portc output high portc, low portc, let pinsc =

PWM pwmout

RAM peek, poke

Sound sound

Serial serin, serout

Program Flow goto, gosub, return, branch

Loops for...next

Mathematics let (+, -, *, **, /, //, max, min, &, |, ^, &/, |/, ^/)

Variables if...then, random, lookdown, lookup

Data memory eeprom, write, read

Delays pause, wait, nap, sleep, end

Miscellaneous symbol, debug

Interrupt setint

Servo Control servo

Infrared infrain

Temperature readtemp, readtemp12

1-wire Serial No readowsn

Keyboard keyin, keyled

Scratchpad put, get, @ptr, @ptrinc, @ptrdec

ADC calibadc, calibadc10

Serial hsersetup, hserout, hserin, serrxd

SPI spiin, spiout, hspisetup, hspiin, hpsiout

I2C hi2csetup, hi2cin, hi2cout

One-wire owin, owout

PWM hpwm

Timer settimer

Power control hibernate, enablebod, disablebod

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

91

91

www.picaxe.com

Appendix B – Over-clocking at higher frequencies

All main PICAXE functions are based upon a 4MHz resonator frequency (8MHz

on X2 parts). However the user may choose to ‘overclock’ some of the PICAXE

parts to achieve faster operation

To change the frequency on current parts:

All 8, 14, 18 and 20 pin chips
Download a program containing the command setfreq m4 (for 4 MHz) or

setfreq m8 (for 8Mhz). If no setfreq command is used in a program the

frequency will default to 4MHz (8MHz on X2 parts). Note the new frequency

occurs immediately after the command is run.

PICAXE-28X1/28X2 and PICAXE-40X1/40X2
Solder the appropriate external 3 pin ceramic resonator into the project board.

Use the setfreq command to switch between internal or external frequency.

To change the frequency on old (obsolete) parts:

With the -08, -18 the internal resonator is fixed at 4MHz and cannot be altered.

With the -08M, -14M, -18A, -18M, -18X the internal resonator has a default value

of 4MHz. However it can be increased by the user to 8MHz via use of the ‘setfreq

m8’ command.

When downloading new programs on old obsolete parts, you must ensure the

correct frequency (#freq directive) is used to match the last program running in

the PICAXE chip. If in doubt perform a ‘hard-reset’ at 4Hz.

With the -28 and -28A an external 4MHz resonator must be used.

With the -28X / -40X an external 4MHz 3 pin ceramic resonator is normally

used, but it is also possible to use a faster resonator (8 or 16Mhz), although this

will affect the operation of some of the commands.

With the -28X1 / -40X1 the internal resonator has a default value of 4MHz.

However it can be increased by the user to 8MHz via use of the ‘setfreq m8’

command or to an external 16/20MHz 3 pin ceramic resonator via use of the

‘setfreq em16 (em20)’ command.

The PICAXE Editor software supports resonator frequencies of 4, 8, 16MHz only.

No other frequencies are recommended. If any other frequency is used it may not

be possible to download a new program into the PICAXE microcontroller.

PICAXE-28X and PICAXE-40X
Solder the appropriate external 3 pin ceramic resonator into the project board.

Downloading programs at 4, 8, 16MHz (old obsolete parts only)
After changing frequency you must select the correct frequency via the

View>Options>Mode software menu. If the wrong frequency is selected the

program will not download. This is not required on M2, X1 and X2 parts as they

default back to the internal resonator for the download.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

92

92

www.picaxe.com

Commands affected by resonator frequency.
Many of the commands are affected by a change in resonator frequency. A

summary of the commands affected are given below (see section 2 of the manual

- BASIC Commands for detailed command syntax and information).

When using devices with an internal resonator, remember that it is sometimes

possible to change back to 4MHz to run the command dependent on this speed

e.g.

setfreq m4

readtemp 1,b1

setfreq m8

This is not possible with devices with an external resonator. This process is

automatic on M2, X1 and X2 parts.

Commands for which operation is affected by change in resonator speed:

• count

• debug

• readi2c, writei2c, i2cin, i2cout

• pause, wait

• pulsin, pulsout

• pwm. pwmout

• serin, serout, sertxd, serrxd, hsersetup, hserin, hserout

• sound

Note that nap, doze and sleep are not affected by resonator speed as they use

their own, separate, internal timer.

The following commands will not work at 8 or 16MHz due to timing issues with

the external device listed. Note that M2, X1 and X2 parts automatically switch to

internal 4MHz operation to process these commands, so the external frequency

can be higher.

• irin, infrain, infrain2, irout, infraout (infrared receiver)

• kbin, keyin (keyboard)

• kbled, keyled (keyboard)

• readtemp / readtemp12 (DS18B20 temperature sensor)

• readowsn, owin, owout (1-wire device)

• servo (servo)

• play, tune (music)

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

93

93

www.picaxe.com

�
/��
��	��

�*��	'	�����	�
��2��
�	'	�����	�

�.@	�	'	(�")	�	'	#��	�&	'	��	�&	'	�����	�
(�")	+	'	#��	��	'	��	��	'	�����	

�*��	'	(�")	�	'	#��	��	'	��	��	'	�����	�

��
#�����	�	'	/��
��	#��	'	��2�����
#�����	
#�����	�
#�����	�	'	#��	��	'	��	��	'	�*�
#�����	�	'	#��	� 	'	��	� 	'	�*��
#�����	&	'	#��	��	'	��	��	'	�*��	'	(�")	*

�

�

�

&

%

$

 �

 �

 �

 �

1

0

�������
�
������������ ��

Appendix C – Configuring the obsolete PICAXE-14M I/O Pins

The PICAXE-14M is a very versatile device. In it’s default state, which is designed

primarily for educational use, it has a simple, clean ‘inputs on left’ - ‘outputs on

right’ layout.

However more advanced users can re-configure the bottom 3 pins on each side to

be either inputs or outputs. This has added advantages as follows:

- more flexible quantity of inputs and outputs

- more ADC channels become available

- the option to use pwmout via the pwmout and hpwm commands

The diagram above shows the advanced function of each pin. The 6 pins are

arranged in a ‘port’ (portC) with bits labelled C0-C5. Note that the portC bit

numbers do not correspond to the normal input/output numbers (or even the leg

numbers!). Study the pinout diagram very carefully!

Using portc pins as outputs
Any portc pin can be configured to be used as a digital output.

To convert the pin C3 to output and make it high

high portc 3

To convert the pin C3 to output and make it low

low portc 3

To convert all the pins to outputs

let dirsc = %00111111

To convert all the pins to inputs

let dirsc = %00000000

It is not possible to access the portc pins C3-C5 with any other ‘output’ type

commands (serout, pulsout etc). Therefore when used as outputs these pins

should be reserved as simple on/off outputs. Remember that C0-C2 are normal

outputs (3-5) anyway, and so can be used with any output command.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

94

94

www.picaxe.com

Using portc as digital inputs
The portc pins C0, C1, C2 are, by default, configured as outputs. They can

however be reconfigured as inputs, but you must ensure your hardware design

allows for the fact that the pin will be an output upon powerup. A simple 1k

resistor in series with the pin will normally resolve this issue.

To make the pin an input you must use ‘let dirsc = ‘ as described above.

The following syntax is used to test the input condition:

if portC pin0 = 1 then jump

i.e. the additional keyword ‘portC’ is inserted after the ‘if’ command.

to test if two (or more) portc inputs are on

if portC pin0 = 1 AND pin1 = 1 then jump

to test if either of two (or more) portc inputs are on

if portC pin0 = 1 OR pin1 = 1 then jump

Note the portc command is only required once after the ‘if’ command.

It is not possible to test inputs on two different ports within the same if…then

statement.

It is not possible to access the portc pins with any other ‘input’ type commands

(count, pulsin etc). Therefore these pins should be reserved as simple on/off

switches.

Note that ‘dirsc’ uses the common BASIC notation 0 for input and 1 for output.

Using portc as analogue inputs
Three additional ADC pins, ADC1,2,3, are available AFTER the corresponding pin

has been converted to an input. You must ensure your hardware design allows for

the fact that the pin will be an output upon powerup. A simple 1k resistor in

series with the pin will normally resolve this issue.

Using portc as pwm outputs
C5 can be used with the pwmout command, but will make this pin an output.

Pins C2-5 (hpwm A-D) can all be used with the hpwm command, but will also

make the corresponding pins outputs.

Special Note - Output Pin 0
Pin 0 (leg 13) is used during the program download, but can also be used as a

normal output once the download is complete. Therefore you must remember

that your output device will rapidly switch on and off as the download takes

place (not a problem with simple outputs like LEDs, but could cause problems

with other devices such as motors).

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

95

95

www.picaxe.com

Appendix D – Configuring the obsolete 08/08M I/O Pins

The PICAXE-08 microcontroller has 5 input/output pins. Unlike the larger

PICAXE microcontroller (where the pins are pre-defined) the user can select

whether some of the pins are used as input or as outputs.

Pin 0 must always be an output, and pin 3 must always be an input (this is due to

the internal construction of the microcontroller). The other 3 pins can be selected

to be inputs or outputs, and so the user can select any input/output combination

between the limits of 1 input-4 outputs and 4 inputs-1 output.

In addition pin 1 also contains a low-resolution analogue to digital converter and

so can be used as an analogue input pin if required.

Important - Don’t Get Confused!
The input/output pin numbers are NOT the same as the external ‘leg’ numbers, as

the input/output pin numbering follows the microcontrollers manufacturers port

allocation. To avoid confusion this manual always talks about ‘legs’ where

referring to the external physical location of the input/output pin.

Leg Description Notes
1 Positive Supply, V Use a 3V to 5V battery pack/supply

2 Serial In Used for the program download

3 Pin 4 Input or output

4 Pin 3 Input only

5 Pin 2 Input or output

6 Pin 1 Input or output

7 Pin 0 / Serial Out Output only. Also used for download

8 Ground, G Connect to the power supply (0V)

Special Note - Output Pin 0
Pin 0 (leg 7) is used during the program download, but can also be used as a

normal output once the download is complete. On the project boards a jumper

link allows the microcontroller leg to either be connected to the download socket

(PROG position) or to the output (OUT position). Remember to move the

jumper into the correct position when testing your program!

If you are making your own pcb you can include a similar jumper link or small

switch, or you may prefer to connect the microcontroller leg to both the output

device and the program socket at the same time. In this case you must remember

that your output device will rapidly switch on and off as the download takes

place (not a problem with simple outputs like LEDs, but could cause problems

with other devices such as motors).

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

96

96

www.picaxe.com

 Selecting Inputs or Outputs.
When the PICAXE-08 first powers up, all pins are configured as input pins (except

pin0, which is always an output). There are three methods of setting the other

pins to be outputs (if required)

Method 1 – use a command that requires the pin to be an output.
This is the simplest method, used by most educational users. As soon as a

command that involves an output pin (such as high, low, toggle, serout or sound)

is used, the PICAXE-08 microcontroller automatically converts the pin to an

output (and leaves the pin as an output).

Therefore the simplest way to setup outputs is just to put a ‘low’ command at the

start of the program for each output pin. This tells the microcontroller to make

the pin an output, and to make sure the output is condition low (off).

Method 2 – use the input and output command.
The command ‘output ?’ (where ? is the pin number) can also be used to tell the

pin to be an output at the start of a program. Likewise the ‘input ?’ command

can be used to set the pin as an input, although this is not normally necessary as

most of the pins are set as inputs by default. Note that the output command does

not set the pin into a known high or low state, so it is often preferable to use the

‘low’ command instead.

The input and output commands have no effect on pin 0 (output) and pin 3

(input), which cannot be altered.

Method 3 – (advanced) use the let dirs = command
The ‘let dirs = %000100111’ command can be used to simultaneously set all the

pins at the same time. This is quicker than using multiple input/output

commands but requires an understanding of binary bits (explained in tutorial 9).

Placing a 0 for the pin number bit will make the corresponding pin an input, a 1

will make the pin an output. The value of bits 0,3,5,6,7 can be either 0s or 1s as

they have no effect on the microcontroller and are simply ignored.

Selecting pins to be an analogue input.
Use of the readadc command will automatically configure the pin to be an

analogue input. Therefore use the command ‘readadc 1,b2’ whenever you wish to

take an analogue reading (presuming use of variable b2 to store the analogue

reading).

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

97

97

www.picaxe.com

Appendix E – Configuring the obsolete 28X/28X1 I/O Pins

To provide greater flexibility, the input /

output pin configuration of the PICAXE-

28X can be varied by the user.

The default power up settings are the

same as the other PICAXE-28 parts (8 in,

8 out, 4 analogue).

PORTA (legs 2 to 5) provide 4 analogue

inputs (default) or up to 4 digital inputs.

PORTB (leg 21 to 28) provide 8 fixed

outputs.

PORTC (leg 11 to 18) provide 8 digital

inputs (default) or up to 8 outputs.

This gives a maximum of 12 digital inputs, 16 outputs and 4 analogue inputs

PORTA Functions
Leg Default Function Second Function
2 analogue 0 porta input 0

3 analogue 1 porta input 1

4 analogue 2 porta input 2

5 analogue porta input 3

PORTB Functions
PORTB pins are fixed as outputs and cannot be altered.

PORTC Functions
Leg Default Second Function Special Function
11 input 0 output portc 0 infrared (input)

12 input 1 output portc 1 pwm 1 (output)

13 input 2 output portc 2 pwm 2 (output)

14 input 3 output portc 3 i2c scl clock (input)

15 input 4 output portc 4 i2c sda data (input)

16 input 5 output portc 5

17 input 6 output portc 6 keyboard clock (input)

18 input 7 output portc 7 keyboard data (input)

The portC pins can be used as the default inputs, changed to outputs, or used

with their special function via use of the infrain, keyin, i2cslave, or pwmout

command as appropriate.

#�����	$
#�����	%
#�����	&
#�����	�	'	(�")	*
#�����	�
#�����	�	'	(�")	+
#�����	 	'	(�")	�
#�����	�

�
��
��	$	'	#��	�$	'	(���
�	'	��	����
��	%	'	#��	�%	'	(������	'	��	���
��	&	'	#��	�&	'	��
	���
��	�	'	#��	��	'	
��	���	'	��
	��

�����
,-�.,	'	�*�	�	'	��	��

�*�	 	'	��	�
�*�	�	'	��	��
�*�	�	'	��	��

/��
��	��
/��
��	#��

��
���������
���������

�
)��	���	'	#��	��	'	��	�
�")	 	'	#��	� 	'	��	

(�")	�	'	�")	�	'	#��	��	'	��	�
��
	���	'	
��	���	'	#��	��	'	��	�

��������	�

�

�

�

&

%

$

0

1

 �

 �

 �

 �

�0

�$

�%

�&

��

��

��

�

��

 1

 0

 $

 %

 &

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

98

98

www.picaxe.com

Using porta as digital inputs
The porta pins 0 to 3 (legs 2 to 5) are, by default, configured as analogue inputs.

However they can also be used as simple digital inputs.

The following syntax is used to test the input condition:

if portA pin0 = 1 then jump

i.e. the additional keyword ‘portA’ is inserted after the ‘if’ command.

to test if two (or more) porta inputs are on

if portA pin0 = 1 AND pin1 = 1 then jump

to test if either of two (or more) porta inputs are on

if portA pin0 = 1 OR pin1 = 1 then jump

Note the portA command is only required once after the ‘if’ command.

It is not possible to test inputs on two different ports within the same if…then

statement.

It is not possible to access the portA pins with any other ‘input’ type commands

(count, pulsin etc). Therefore these pins should be reserved as simple on/off

switches.

Using portc as outputs
The portc pins are, by default, digital input pins.

However they can also be configured to be used as digital outputs.

To convert the pin to output and make it high

high portc 1

To convert the pin to output and make it low

low portc 1

To convert all the pins to outputs

let dirsc = %11111111

To convert all the pins to inputs

let dirsc = %00000000

Note that ‘dirsc’ uses the common BASIC notation 0 for input and 1 for output.

(Advanced - If you are more familiar with assembler code programming you may

prefer to use the command ‘let trisc =’ instead, as this uses the inverted assembler

notation - 1 for input and 0 for output. Do not attempt to directly

poke the trisc register (poke command) as the PICAXE bootstrap refreshes the

register setting regularly).

To switch all the outputs on portc high

let pinsc = %11111111

(or) let portc = %11111111

To switch all the outputs on portc low

let pinsc = %00000000

(or) let portc = %00000000

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

99

99

www.picaxe.com

#�����	$
#�����	%
#�����	&
#�����	�
#�����	�
#�����	�
#�����	
#�����	�

�
��
�����	$	'	��3�����	����
�����	%	'	��3�����	�����
�����	&
�����	�
��	�$	'	#��	�$
��	�%	'	#��	�%
��	�&	'	#��	�&
��	��	'	#��	��	'	
��	���
�����	�
�����	�

�����
�*�	�	'	��	��
�*�	 	'	��	�
�*�	�	'	��	��
�*�	�	'	��	��

/��
��	��
/��
��	#��

�*�	&
�*�	%
�*�	$

�
��

���������
���������

��	��	'	#��	��
��	� 	'	#��		� 	'	�")	
��	��	'	#��	��	'	�")	�
��	��	'	#��		��	'	
��	���

�����	�	'	��2��
�
�����	

����������

�

�

�

&

%

$

0

1

 �

 �

 �

 �

 &

 %

 $

 0

 1

��

��

�1

�0

�$

�%

�&

��

��

��

�

��

�1

�0

�$

�%

�&

��

��

��

�

Appendix F – Configuring the obsolete 40X/40X1 I/O Pins

To provide greater flexibility, the input/output pin

configuration of the PICAXE-40X can be varied by

the user.

PORTA (legs 2 to 5) provide 4 analogue inputs

(default) or up to 4 digital inputs.

PORTB (leg 33 to 40) provide 8 fixed outputs.

PORTC (leg 15-18. 23-26) provide 8 digital

inputs (default) or up to 8 outputs.

PORTD (leg 19-22, 27-30) provide 8 digital

inputs

PORTE (leg 8 to 10) provide 3 analogue inputs

This gives a maximum of 20 digital inputs,

16 outputs, 7 analogue inputs

PORTA Functions
Leg Default Function Second Function
2 analogue 0 porta input 0

3 analogue 1 porta input 1

4 analogue 2 porta input 2

5 analogue porta input 3

PORTB / PORTE Functions
PORTB pins are fixed as outputs and cannot be altered.

PORTE pins are fixed as analogue inputs and cannot be altered.

PORTC Functions
Leg Default Second Function Special Function
15 input portc 0 output portc 0

16 input portc 1 output portc 1pwm 1 (output)

17 input portc 2 output portc 2pwm 2 (output)

18 input portc 3 output portc 3i2c scl clock (input)

23 input portc 4 output portc 4i2c sda data (input)

24 input portc 5 output portc 5

25 input portc 6 output portc 6

26 input portc 7 output portc 7

The portC pins can be used as the default inputs, changed to outputs, or used

with their special function via use of the i2cslave or pwmout command

PORTD Functions
Leg Default Function Special Function
19 input 0 infrared (input)

20 input 1

21 input 2

22 input 3

27 input 4

28 input 5

29 input 6 keyboard clock (input)

30 input 7 keyboard data (input)

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

100

100

www.picaxe.com

Using porta as digital inputs
The porta pins 0 to 3 (legs 2 to 5) are, by default, configured as analogue inputs.

However they can also be used as simple digital inputs.

The following syntax is used to test the input condition:

if porta pin0 = 1 then jump

i.e. the additional keyword ‘portA’ is inserted after the ‘if’ command.

to test if two (or more) porta inputs are on

if porta pin0 = 1 AND pin1 = 1 then jump

to test if either of two (or more) porta inputs are on

if porta pin0 = 1 OR pin1 = 1 then jump

Note the portA command is only required once after the ‘if’ command.

It is not possible to test inputs on two different ports within the same if…then

statement.

It is not possible to access the portA pins with any other ‘input’ type commands

(count, pulsin etc). Therefore these pins should be reserved as simple on/off

switches.

Using portc as digital inputs
On the PICAXE-40X portD are the standard inputs, and hence use the standard

if pin0 = command. Therefore for portC inputs the extra keyword portC must

be used (as in the if portA pin0 = example above).

Using portc as outputs
The portc pins are, by default, digital input pins.

However they can also be configured to be used as digital outputs.

To convert the pin to output and make it high

high portc 1

To convert the pin to output and make it low

low portc 1

To convert all the pins to outputs

let dirsc = %11111111

To convert all the pins to inputs

let dirsc = %00000000

Note that ‘dirsc’ uses the common BASIC notation 0 for input and 1 for output.

(Advanced - If you are more familiar with assembler code programming you may

prefer to use the command ‘let trisc =’ instead, as this uses the inverted assembler

notation - 1 for input and 0 for output. Do not attempt to directly

poke the trisc register (poke command) as the PICAXE bootstrap refreshes the

register setting regularly).

To switch all the outputs on portc high

let pinsc = %11111111

(or) let portc = %11111111

To switch all the outputs on portc low

let pinsc = %00000000

(or) let portc = %00000000

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

101

101

www.picaxe.com

Appendix G - Frequently Asked Questions (FAQ).

Where can I purchase PICAXE microcontrollers?
All microcontrollers can be purchased from within the PICAXE section of the

online store at www.techsupplies.co.uk or from our distributors (see

www.picaxe.com)

Which cable - serial or USB?
Most modern computers do not have a 9 pin legacy serial port and so we always

recommend the USB download cable part AXE027. However the AXE026 serial

cable is a more economical option for multiple old computers that do still have

serial ports - e.g. in a school IT room.

There appears to be two PICAXE serial download cables - which should I use?
The standard serial PICAXE cable (part AXE026) ends with a stereo style 3.5mm

plug. If making your own board we recommend this stereo cable cheaper as it is

cheaper, better quality, and our sample PCB files use this connector (part

CON039). The original PICAXE-28 cable (part AXE025) ended with a 3 pin in-

line connector, but this cable is no longer used on any of our project boards or

sample pcbs.

I've built a second pcb (without the download circuit) and the PICAXE program will not
run!

If you program a PICAXE chip in a different board, and then move the chip to a

board without the download circuit, you must ensure that the 'serial in' pin is

tied to ground (0V) on the second board for reliable operation.

I’ve bought some blank PICs and they don’t work in the PICAXE system!
The PICAXE microcontroller is not a blank PICmicro! It is a microcontroller that

has been pre-programmed with a ‘bootstrap’ program that enables the download

via the direct cable link (the bootstrap program tells the microcontroller how to

interpret the direct cable programming commands). Therefore you must buy

‘PICAXE’ microcontrollers, rather than blank microcontrollers, to use with the

PICAXE system. However we sell PICAXE microcontrollers at approx. the same

price as blank devices, so there is very little price difference for the end user,

particularly if you purchase the multi-packs.

I’ve programmed a PICAXE microcontroller using a conventional programmer and it will
now not work in the PICAXE system!

You have overwritten, and hence deleted, the PICAXE bootstrap program (see

above). The microcontroller can no longer be used as a PICAXE microcontroller,

but you can naturally continue using it with your conventional programmer.

Can you reprogram microcontrollers (that I have accidentally erased) with the bootstrap
program?

No. We do not accept microcontrollers from unknown sources due to the correct

storage/handling procedures required by these devices. We use gang programmers

costing several thousand pounds to program the bootstrap code into the blank

microcontrollers, and so must protect this expensive equipment from damage. It

is also likely that if we did offer this service the handling cost would end up more

expensive than new PICAXE microcontrollers anyway!

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

102

102

www.picaxe.com

Can you supply the bootstrap program so that I can make my own PICAXE?
No. The small royalty made on each PICAXE chip sold is the main financial

benefit to our company to support the PICAXE system - the software is free and

the cables/development kits are sold at very low cost. Therefore we do not allow

anyone else to manufacture PICAXE microcontrollers.

Can I see the assembler code that is downloaded into the PICAXE?
You can convert PICAXE BASIC programs into assembler code, to program blank

PICs or to just learn how assembler code works by 'disassembly'. However some

of the very complex functions (e.g. M2 multi-tasking programs) are not

supported, and the assembler code program generated is optimised for processing

speed (not optimised for compactness as with the PICAXE system) and so the

code is not 100% identical to that downloaded to the PICAXE.

Can you alter the input/output pin arrangement of the PICAXE microcontroller?
All M2 and all X2 parts have configurable pins. The other older obsolete parts

have mainly fixed i/o, although some pins can be changed - see the appendices at

the end of Manual part 1 for more details.

How long a program can I download into the PICAXE microcontroller?
This varies on the commands used, as not all commands use the same amount of

memory. As a general rule you can download about

40-110 lines of code into PICAXE-08/18

80-220 lines of code into PICAXE-08M/14M/20M/18A/18M/28/28A

600-1800 lines of code into PICAXE-14M2/18M2/20M2/18X/28X/40X

2000-3200 lines of code into PICAXE-20X2/28X1/28X2/40X1/40X2

However some commands, such as sound and serout use more memory and so

will reduce this count. In our experience most educational programs that are too

long to download are generally badly composed, and can be greatly reduced in

size by use of sub-procedures etc.

Do I need to erase the device?
How do I stop a program in the PICAXE microcontroller running?

Each download automatically overwrites the whole of the previous program.

There is generally no need to erase the memory at any point. However if you want

to stop a program running you can select the ‘Clear Hardware Memory’ menu to

download an ‘empty’ program into the PICAXE memory.

How often can the PICAXE microcontroller be reprogrammed?
PICAXE chips can be reprogrammed at least 100,000 times. Note these are

minimum values and the actual values may be much greater.

How vulnerable to damage are the microcontrollers?
The microcontrollers have a high level of static protection built into each pin and

so handling them without any personal static protection in an educational

environment is perfectly acceptable.

Can I control servos using the PICAXE?
Yes, many parts have a ‘servo’ command that allows control of up to 8 servos (one

on each output).

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

103

103

www.picaxe.com

Can I control an LCD display?
Yes, the PICAXE supports serial LCD modules (like the Serial LCD/Clock Module

AXE033) via the serout command. Note that the AXE033 module can also be pre-

programmed with up to 8 messages to reduce the memory usage of the PICAXE

microcontroller.

How fast does the PICAXE operate?
The PICAXE-08/18 microcontrollers have an internal 4MHz resonator, and the

PICAXE-28/40 uses an external 4MHz ceramic resonator. This means the

microcontroller processes 1 million assembler commands a second, which

equates to roughly about 1,000 BASIC commands per second.

The M and X parts can be overclocked to 8 or 16MHz (multiplies speed by x2 or

x4).

Does the PICAXE support interrupts?
Yes. Many parts support a polled interrupt on the input port. Use the ‘setint’ or

‘setintflags’ command to setup the desired interrupt port setting.

How do I create time delays longer than 65 seconds?
The best way of creating long delays is to do minute delays with a loop, e.g. to

wait an hour (60 minutes)

for b2 = 1 to 60 ‘start a for..next loop

pause 60000 ‘wait 1 minute

next b2 ‘next loop

The PICAXE microcontroller works at a nominal 4MHz, but due to device

manufacturing tolerances there is likely to be a drift of a few seconds over long

time periods (e.g. a day). Note that the Serial LCD/Clock module (AXE033) has a

precision clock and ‘alarm clock’ function that can be used to trigger the PICAXE

at predefined interval or at certain time/dates with much greater precision. The X

parts can also be linked to the i2c DS13097 real time clock.

My program is too long! What can I do?
Tips for reducing program length (see BASIC Commands help file for more

details):

1) Use ‘let pins =’ instead of multiple high/low commands

2) Use sub-procedures for repeated code

3) Try to reduce the use of sound and serout commands, which use a lot of

memory

4) If using an LCD, store the messages in the AXE033 Serial LCD Module, rather

than in the program

5) Use eeprom and read commands to store messages in data memory (see next

page)

6) Restructure your program to reduce the number of ‘goto’ commands

7) Use a PICAXE chip with the largest memory (X1 or X2 parts)

You can use the ‘PICAXE>Check Syntax’ menu to test the length of your program

without a download.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

104

104

www.picaxe.com

Do symbols increase the program length?
No, all symbols are converted back to ‘numbers’ by the computer software prior

to download and so have no effect on program length. You can use as many

symbol commands as you wish.

What notes are generated by the sound command?
The sound command generates different ‘beep’ sounds for the values 1-127.

The tune and play commands on the PICAXE-08M are specifically designed to

play tunes. See the tune command in section 2 of the manual for more details.

I need more outputs - what can I do?
Use the PICAXE-28X/28X1 or 40X/40X1 which can have up to 16 outputs. Or

connect a single output (e.g. output7) from a first PICAXE chip to input0 of a

second PICAXE-18 chip. Program the second PICAXE-18 chip with this simple

program:

main: serin 0,N2400,b1

let pins = b1

goto main

The eight outputs of the second chip can now be controlled with a serout

7,N2400,(b2) command by the first chip, where b2 contains the ‘pins’ value (0 to

255) desired on the second chip. This gives you a total of 15 useable outputs.

I need more inputs - what can I do?
Use a PICAXE-28X1 or 40X1, which can be configured to have a large number of

inputs. Remember that analogue inputs can also be used as digital inputs if

required, just see if the ‘readadc’ value is greater or less than 100. In many

applications switches can also be connected in parallel on a single input pin.

How do I test more than one input at once?
Use the following command to test two inputs together

if pin0 = 1 and pin1 = 1 then...

or either of two inputs

if pin0 = 1 or pin1 = 1 then...

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

105

105

www.picaxe.com

Appendix I - Advanced Technical Information and FAQ

This appendix provides advanced technical data for users who wish to understand

more advanced technical data about the PICAXE microcontrollers. This

information is not required for normal PICAXE use.

These notes presume the user is familiar with PIC microcontrollers, their

configuration fuse settings and programming in assembler code.

What is a PICAXE microcontroller?
A PICAXE microcontroller is a Microchip PIC microcontroller that has been pre-

programmed with the PICAXE bootstrap code. The bootstrap code enables the

microcontroller to be reprogrammed without the need for an (expensive)

conventional programmer, making the whole download system a very low-cost

simple serial cable!

The bootstrap code also contains common routines (such as how to generate a

pause delay or a sound output), so that each download does not have to waste

time downloading this commonly required data. This makes the download time

much quicker.

Why use the PICAXE instead of assembler / C?
The PICAXE uses a simple BASIC language (or flowcharts) that younger students

can start generating programs with within an hour of first use. It is much easier to

learn and debug than either C or assembler code.

The second advantage is the direct cable download method. The software is free

and so the only cost per computer is a low-cost download cable. This enables

students to buy their own cable and for schools to equip every single computer

with a download cable. Other systems that require an expensive programmer are

generally too expensive to implement in this way.

Finally as the PICAXE chip never leaves the board, all leg damage (as can occur

when the chip is moved back and forth from a programmer) is eliminated.

How is the program stored within the microcontroller?
The program is stored in either data or program memory depending on the

microcontroller type. The following table shows how program, read/write/

eeprom data and readmem/writemem data is stored.

Program Read/Write Readmem/Writemem
PICAXE-08M2Program/Data Data (256) N/A (use i2c)

PICAXE-14M2Program Data (256) N/A (use i2c)

PICAXE-18M2Program/Data Data (256) N/A (use i2c)

PICAXE-20M2Program Data (256) N/A (use i2c)

PICAXE-18X Program Data (256) N/A (use i2c)

PICAXE-28X Program Data (128) N/A (use i2c)

PICAXE-28X1 Program Data (256) N/A (use readtable or i2c)

PICAXE-28X2 Program Data (256) N/A (use readtable or i2c)

PICAXE-40X Program Data (128) N/A (use i2c)

PICAXE-40X2 Program Data (256) N/A (use readtable or i2c)

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

106

106

www.picaxe.com

The program and read/write memory is overwritten with every download. Use the

eeprom command to preload data (within the program) for the read/write

commands. The readmem/writemem memory is not changed during a download.

How many times can the microcontroller be reprogrammed?
PICAXE chips can be reprogrammed at least 100,000 times. Note these are

minimum values and the actual values may be much greater.

How is a download started?
When the computer starts a download an interrupt is generated on the serial

input pin on the PICAXE. This interrupts the main program and puts the PICAXE

into a state for a new download to be received. Therefore you must ensure that

the 'serial in' pin is tied to ground (0V) via the 22k/10k resistors on ALL project

boards for reliable operation of the microcontroller (to prevent unwanted

‘floating pin’ interrupt signals).

What are the electrical characteristics of the PICAXE (e.g. operating voltage range etc.)?
The electrical characteristics of the PICAXE microcontroller is dependent upon

the base PIC microcontroller that is programmed with the PICAXE bootstrap

code to create the PICAXE microcontroller. Therefore see the Microchip datasheet

(from www.microchip.com) for the appropriate microcontroller characteristics.

The lowest recommended operating voltage from these datasheets is 3V (Note

this is the ‘operating voltage’ only. You may require a higher voltage (minimum

4.5V recommended) whilst doing the actual serial download from the computer

to ensure accurate memory programming of the chip). X2 parts are also available

in special 1.8V to 3.3V variants.

Does the PICAXE set the watchdog timer fuse?
Yes, the watchdog timer is set and used within a number of commands such as

sleep and nap. The user cannot alter it’s settings.

Does the PICAXE set the power-up timer fuse?
Yes.

Does the PICAXE set the brown-out fuse?
Yes for the M, M2, X1 and X2 parts, no for other parts. An unfortunate side effect

of the brown-out fuse on the other parts is that it restricts the lowest operating

voltage of the micro-controller to about 4.2V. As many users wish to use 3V

battery packs, the brown-out fuse is not set on the PIC microcontrollers with a

4.2V brown-out.

The enablebod/disabledbod command can enable/disable the brown out

function on M, M2, X1 and X2 parts.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

107

107

www.picaxe.com

How does the PICAXE do ADC (analogue-to-digital) conversions?
The (discontinued) PICAXE-08 and PICAXE-18 used the internal comparator to

do a low resolution ADC step comparison, providing 16 discrete analogue

values. The other PICAXE microcontrollers all use the internal ADC to do a full

256 step (8 bit) conversion. Although the microcontrollers are technically

capable of 10 bit conversions, this is converted by the readadc command into

byte (8 bit) values for ease of use via the byte (b1 etc.) variables, which makes the

maths easier for students. This gives a resolution of about 0.02V (at 5V supply)

which is adequate for almost all educational projects. Most parts also have a

separate 10 bit adc read option (1024 steps), via the readadc10 command.

Can you supply the bootstrap program so that I can make my own PICAXE?
No. The small royalty made on each PICAXE chip sold is the only financial

benefit to our company to support the PICAXE system - the software is free and

the cables/development kits are sold at very low cost. Therefore we do not allow

anyone else to manufacture PICAXE microcontrollers.

Can I mix assembler in with the BASIC code?
No. The program and bootstrap code cannot be ‘mixed’ with assembler code, this

is not good programming practice. However you can achieve the same goal by

converting your BASIC into assembler code using the automatic conversion

feature, and then editing the converted assembler code program (see below).

Can I see the assembler code that is downloaded into the PICAXE?
If you own a Revolution Serial PIC Programmer (part BAS800), you can convert

PICAXE BASIC programs into assembler code, to program blank PICs or to just

learn how assembler code works by 'disassembly'. However some of the more

complex commands (e.g. serin) are not supported, and the assembler code

program generated is optimised for sequential learning (not optimised for

compactness as with the PICAXE system) and so the code is not identical to that

downloaded to the PICAXE.

Can you alter the input/output pin arrangement of the PICAXE microcontroller?
The PICAXE-08 has 5 pins that can be configured as desired. The 28 and 40 pin

PICAXE can also be altered to give more inputs or outputs. The 18 pin input/

output pin arrangements are fixed and cannot be altered.

How long a program can I download into the PICAXE microcontroller?
This varies on the commands used, as not all commands use the same amount of

memory.

There is no fixed ‘byte’ formula as to memory usage e.g. pause 5, pause 50 and

pause 500 will all take different amounts of memory space! To calculate memory

usage use the ‘Check Syntax’ option from the PICAXE menu. This will report the

amount of memory used.

Do symbols increase the program length?
No, all symbols are converted back to ‘numbers’ by the computer software prior

to download and so have no effect on program length. You can use as many

symbol commands as you wish.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

108

108

www.picaxe.com

Do I need to erase the device?
How do I stop a program in the PICAXE microcontroller running?

Each download automatically overwrites the whole of the previous program.

There is generally no need to erase the memory at any point. However if you want

to stop a program running you can select the ‘Clear Hardware Memory’ menu to

download an ‘empty’ program into the PICAXE memory.

Why is an ‘empty’ program not 0 bytes long?
Each downloaded program contains some configuration data, and an ‘end’

command is always added automatically to the end of each downloaded

program. Therefore an ‘empty’ program on screen will not generate a zero byte

program. To prevent the automatic end use the #no_end directive.

How vulnerable to damage are the microcontrollers?
The microcontrollers have a high level of static protection built into each pin and

so generally handling them without any personal static protection in an

educational (non-production) environment is acceptable.

Can I use i2c EEPROMs with the PICAXE?
The M2, X, X1 and X2 parts support all i2c parts via the hi2cin and hi2cout

commands.

Can the PICAXE count pulses?
The M, M2, X, X1 and X2 parts support the count command which can count the

number of pulses in a defined period. All parts support the pulsin command to

measure the length of a pulse.

Can I control servos using the PICAXE?
Can I do PWM control of a motor using the PICAXE?

The M, M2, X, X1 and X2 parts have a dedicated pwmout command which acts

on one or two of the pins for full pwm control.

These parts also have a ‘servo’ command that allows control of up to 8 servos

(one on each output). The servo command users the internal timer and an

interrupt, so that the pulses are maintained ‘in the background’ all the time that

the PICAXE is running the main program.

The servo command produces a pulse of length 0.01ms to 2.55 ms approximately

every 20ms. Therefore it can also be used as a simple background PWM output

with PWM mark:space ratios between 1:2000 and 1:8 (approx).

How fast does the PICAXE operate?
Can I overclock the PICAXE?

All parts have an internal 4MHz/8MHz resonator, and the PICAXE-28/40 family

can optionally also use an external ceramic resonator. This means the

microcontroller processes 1 million assembler commands a second, which

equates to roughly about 1000 BASIC commands per second. Different

commands take different times to execute depending on how complex their

‘assembler code’ is.

All parts can be overclocked up to 64MHz (see the Over-clocking Appendix for

restrictions).

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

109

109

www.picaxe.com

Why does the PICAXE only support up to 4800 baud rate on serout/serin commands?
Can I send and receive serial data via the download cable?

The maximum baud rates were originally selected for reliable operation with

microcontrollers with internal resonator. The early internal resonators were not

as accurate as an external device, and a slower baud rate ensures reliable

operation. The M2, X1 and X2 parts support much higher baud rates via the

hardware EUSART using the hserout command.

Many parts can send data via the download cable via a ‘sertxd’ command and

receive data via the ‘serrxd’ command.

Does the PICAXE support interrupts?
The PICAXE uses the internal microcontroller interrupts for some of it’s BASIC

commands (e.g. servo). Therefore the internal interrupts are not available for

general use. However the A, M and X parts all support a single ‘polled’ interrupt

on the input port. Use the ‘setint’ BASIC command to setup the desired interrupt

port setting to enable the polled interrupt. The polled interrupt scans the input

port between every BASIC command (and constantly during pause commands),

and so activates very quickly.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 8.0 10/2013

110

110

www.picaxe.com

Software Version

The latest version of the PICAXE Editor and all other titles can be downloaded

from the following website:

www.picaxe.com/software

A very active forum for the discussion of PICAXE projects, and for technical

support, also exists at

www.picaxeforum.co.uk

Contact Address

Revolution Education Ltd
http://www.rev-ed.co.uk/

Acknowledgements

Revolution Education would like to thank the following:

Clive Seager

John Bown

LTScotland

Higher Still Development Unit

UKOOA

You. Thank you for being a valued PICAXE customer.

	Contents
	About this manual
	Software Overview
	Software Comparison
	Software Quick Choice Guide
	Third Party Software
	Technical Support Forum
	Quick Start - Project Board PCB Preparation
	Quick Start - Flashing an LED
	At a glance - specifications:
	At a glance - download circuit:
	At a glance - pinout diagrams (older parts):
	At a glance - pinout diagrams (M2 parts):
	At a glance - pinout diagrams (X2 parts):
	What is a microcontroller?
	Microcontrollers, input and outputs
	What is the PICAXE system?
	Building your own circuit / PCB
	What is a PICAXE microcontroller?
	PICAXE chip labels
	Superseded older PICAXE chips
	Which PICAXE chip?
	Using the PICAXE system.
	PICAXE Starter Packs
	PICAXE Project Boards
	Software Installation
	Installation on RM CC3 networks
	Installing the AXE027 USB cable drivers
	Downloading over a network using TCP/IP
	PICAXE Power Supply
	PICAXE-08M2/08M/08 Pinout and Circuit
	PICAXE-14M2/14M Pinout and Circuit
	PICAXE-20X2/20M2/20M Pinout and Circuit
	PICAXE-18M2/18X/18M/18A/18 Pinout and Circuit
	PICAXE-28X2/28X1/28X/28A Pinout and Circuit
	PICAXE-28X2 Module (AXE200/AXE201)
	PICAXE-28X2 Shield Base (AXE401)
	PICAXE-40X2/40X1/40X Pinout and Circuit
	USB Download Circuit
	Serial Download Circuit (NB: Obsolete, for info only)
	Enhanced Serial Download Circuit (NB: Obsolete, for info only)
	Download Cables
	Using the Serial In pin as a general input pin
	Reset Circuit
	Resonator
	Testing the System
	Hard-reset procedure
	Download Checklist
	Understanding the PICAXE memory.
	Parallel Task Processing
	Flowchart or BASIC?
	BASIC Simulation
	Interfacing Circuit Summary
	Tutorial 1 - Understanding and using the PICAXE System
	Input / Output Pin Naming Conventions
	Tutorial 2 - Using Symbols, Comments & White-space
	Tutorial 3 - For…Next Loops
	Tutorial 4 - Making Sounds
	Tutorial 5 - Using Digital Inputs
	Tutorial 6 - Using Analogue Sensors
	Tutorial 7 - Using Debug
	Tutorial 8 - Using Serial Terminal with Sertxd
	Tutorial 9 - Number Systems
	Tutorial 10 - Sub-procedures
	Tutorial 11 - Using Interrupts
	The next step - your own PICAXE project!
	Appendix A - BASIC Commands Summary
	Appendix B - Over-clocking at higher frequencies
	Appendix C - Configuring the obsolete PICAXE-14M I/O Pins
	Appendix D - Configuring the obsolete 08/08M I/O Pins
	Appendix E - Configuring the obsolete 28X/28X1 I/O Pins
	Appendix F - Configuring the obsolete 40X/40X1 I/O Pins
	Appendix G - Frequently Asked Questions (FAQ).
	Appendix I - Advanced Technical Information and FAQ
	Software Version
	Contact Address
	Acknowledgements

