
PPPPPICAXE ‘SICAXE ‘SICAXE ‘SICAXE ‘SICAXE ‘SIMONIMONIMONIMONIMON S S S S SAAAAAYSYSYSYSYS’ G’ G’ G’ G’ GAMEAMEAMEAMEAME

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Vesrion 1.2 11/2009
AXE106.P65

Order Codes:

AXE106 Simon Says Game Self-Assembly Kit

Features

• 4 play switches with different colour LED indicators

• piezo sound device

• speed control preset resistor

• reprogrammable PICAXE18M microcontroller

• simple construction

Also required: - 3x AA batteries

- soldering iron and solder

- side cutters and small cross-head screwdriver

Contents:

R1 1 4k7 carbon film 0.25W yellow violdet redgold

R2-5 4 330R carbon film 0.25W orange orange brown gold

R6 1 22k carbon film 0.25W red red orange gold

R7-11 5 10k carbon film 0.25W brown black red gold

VR1 1 100k preset resistor

C1 1 100nF polyester capacitor marked 104 - not polarised

CT1 1 stereo PICAXE connector ensure ‘snapped’ onto pcb

LED1 1 5mm red LED align flat with ink image on pcb

LED2 1 5mm yellow LED align flat with ink image on pcb

LED3 1 5mm green LED align flat with ink image on pcb

LED4 1 5mm blue LED align flat with ink image on pcb

PZ1 1 piezo transducer

SW5 1 miniature reset switch only fits one way around!

SW1-4 4 push switch only fits one way around!

IC1 1 18 pin IC socket use for PICAXE18M

IC1 1 PICAXE18M microcontroller pin 1 faces up

BT1 1 3xAA battery box + clip red wire - V+

1 pcb

2

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 1.2 11/2009
AXE106.P65

PICAXE ‘Simon Says’ Game

Assembly Instructions
1. Solder all the resistors in position. The values of the resistors are shown on

the pcb, and the colour codes are given in the table on page 1.

2. Solder the PICAXE download socket CT1 is position. Make sure it clicks flat

onto the PCB before soldering.

3. Solder the IC socket in position.

4. Solder the preset resistor VR1 in position.

5. Solder the rectangular polyester capacitor C1 in position. It can be used either

way around.

6. Solder the reset switch in position - it will only fit one way around. Solder the

four push switches in position.

7. Solder the four LEDs in position. The LED can be soldered directly to the pcb

or connected via wires (not supplied). Make sure the flat on the LED aligns

with the footprint on the pcb.

8. Solder the piezo sounder PZ in central PIEZO position.

9. Thread the battery clip through the PCB The red wire is connected to the V+

contact, the black wire to the 0V contact.

10. Push the PICAXE18M chip into it’s socket. Make sure pin 1 faces the four

resistors.

11. Insert 3AA batteries (not supplied) into the battery pack and then connect to

the battery clip.

12. Program the microcontroller using the sample program given.

DO NOT USE A 9V PP3 BATTERY WITH THIS PRODUCT.

ONLY USE THE 4.5V (3xAA CELL) BATTERY BOX SUPPLIED.

The PICAXE-18M chip must be programmed before use.
The sample program can be found in the \samples folder of the
Programming Editor software (file AXE106 Simon Says.bas).

Safety
This product is designed as an educational teaching aid. It is not a toy and should

not be handled by young children due to sharp edges and small parts.

THIS PRODUCT IS NOT DESIGNED AS A TOY FOR SMALL CHILDREN.

3

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 1.2 11/2009
AXE106.P65

PICAXE ‘Simon Says’ Game

SSSSSIMONIMONIMONIMONIMON S S S S SAAAAAYSYSYSYSYS……………

Remember the 70’s?
I recently enjoyed the series of programs made by the BBC called ‘I

love 197x’. You certainly start to realise your age when you

discover that 1978 was 25 years ago! The 1978 program made

reference to the cult toy of the year, ‘Simon’ made by MB Games,

which was loved by children and loathed by parents! This was one

of the very first mass produced electronic games and I remember

playing it for hours with friends and relatives.

Simon
For those too young to remember 1978, the idea behind the

Simon game was quite simple. It was based on the old game

‘Simon Says’. The game was made up of a big round plastic case

with four coloured panels – under each panel was a switch and a

light bulb. You would start the game and the electronics would

light up one of the four panels and sound a tone. The game was

then to press the panel that lit up. Simple enough! Then Simon

would repeat, lighting that panel and adding another. Now your

job was to press the two panels in the correct order. The number of

panels would continue to get longer until you could no longer

remember the sequence, which would cause Simon to issue a

harsh buzz and end the game.

As I watched the TV program it struck me that this vintage toy from 1978 could probably be reproduced with a cheap

PIC microcontroller now at very low cost.

So I set myself the task of building my own ‘Simon Says’ game for under £5 (excluding PCB cost). At the same time I

thought it would provide a perfect example of how to demonstrate how to remember sequences whilst

programming, something that students regularly find difficult.

Internet Trivia
A quick search on the Web soon revealed lots of useless trivia about the game.

The first single player game was released in 1978,

and then in 1979 MB released ‘Super Simon’ which

had two sets of panels so that two people could

play against each other. In 1980 Pocket Simon, a

smaller version of the original game, was released.

There was also a special edition Simon released

with a clear casing so the electronics could be seen

inside. Apparently the ‘Super Simon’ can also be

seen in the film ‘ET’ on the shelf behind ET’s head

when he first speaks!

However I was more interested in how the original

game worked. I discovered it needed both a 9V PP3

and 2 large D cells to make it work, presumably to

power the light bulbs and speaker, but could not

discover much more online.

4

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 1.2 11/2009
AXE106.P65

PICAXE ‘Simon Says’ Game

But fortunately I then discovered that I could buy a real Super Simon, complete with box and instructions, for

just £15. So five days later I was a proud owner of a vintage game, which I then, as you probably expect,

completely disassembled! (Many thanks to www.retrogames.co.uk).

The Original Game

After taking off the cover, the PCB inside the Super

Simon was extremely bare – 8 bulbs buffered by a

couple of standard logic gates and a Texas Instrument

‘microcomputer’ chip. These microcomputer chips were

the first ‘single chip’ controllers widely used in consumer

products, and can be found in a wide range of early 80’s

equipment such as vending machines. These single chip

‘microcomputers’ were the predecessors of the modern

PIC microcontrollers, and used in a very similar way.

Many people think microcontrollers are new, when in

actual fact this game was using almost identical single

chip technology 25 years ago!

The New Game

The circuit for the microcontroller version of the game is shown in figure 4 (the standard PICAXE serial

download circuit on pins 2,3 is not shown for clarity). The circuit is very straight forward, 4 LED outputs (I

chose red yellow green and blue), a piezo-sounder and 4 push switches. As the PICAXE-18M system was used

for programming I also added the PICAXE download socket to the prototype PCB (shown in Figure 5), so that

the microcontroller could be re-programmed onboard via direct cable link without the need for a programmer.

The cost of the circuit was calculated at under £5 (excluding PCB)! It will also run quite happily off three small

AA cells, certainly no need for the large D cells and the PP3!

�
�
�
�
�
�
�
�
	

��
��
��
��
��
��
��
��
�

����

�
��

�
�
�
��

	�

�����
��
�

�

�

�

�

�

�

� �

�����

�

�

�

��
�

�
�
�

�

�

�

�

�
�

�

5

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 1.2 11/2009
AXE106.P65

PICAXE ‘Simon Says’ Game

Programming Introduction

The programming task for the Simon game is fairly complicated, and certainly more advanced that most

GCSE projects. However it is a perfect example of how to demonstrate how to ‘remember’ sequences,

something students generally find very complex to do.

When approaching a complicated problem like this it is essential to break the overall task down into

small, manageable chunks, and then put the whole program together at the end. I identified the

following tasks:

1) Wait for the player to press a switch to start the game.

2) Generate a sequence of random numbers (0 to 3 for the four LEDs). In this case I will use 100 steps

(many more than 7 or 8 I can normally repeat in a game!). These numbers are stored in the

microcontrollers data memory, which actually has space for up to 256 steps.

3) Get the microcontroller to play back the numbers. To do this the micro-controller must know how

many steps to playback in each turn of the game. To do this I will use a variable called ‘topstep’ to

remember how many steps to playback. If topstep = 1, one step will be played back, if topstep = 2,

two steps will be played back etc.

4) When the player presses the switch, the microcontroller must light the correct LED for that switch, and

then compare the switch press to see if it is the correct switch. To do this the microcontroller must

also count how many switches the player has pressed, and to do this I will use another variable called

‘playerstep’.

5) When the player reaches the end of the sequence, the microcontroller must acknowledge the success,

add one to the value of topstep, and then repeat the process from 3) above. If the player gets the

sequence wrong, a buzzer will sound and the game reset.

Program

The full program is given overleaf. The program is complex, but is provided mainly as an example of

what can be achieved with microcontrollers. Full comments are given in the program, but a brief

explanation is also included here.

Section 1 in the program is a loop that lights all four LEDs, generates a random number, and then waits

for a switch to be pushed to start the game. By including the ‘random’ command within the loop, it is

constantly varying and so no two games will be the same.

Section 2 use a for…next loop to store 30 random numbers in the microcontrollers memory. As the

random command generates a number between 0 and 255, and we only require the numbers 0 to 3 (for

the four LEDs), a simple comparison test is made to get the four desired values.

Section 3 switches all four LEDs off, and then uses a for..next loop to play back the sequence (up to the

variable called topstep). The ‘beep’ sub-procedure in section 5 is used to light the appropriate LED and

make a sound for each step (the sound is different for each LED to aid memory during the game).

Section 4 first resets the players position to 1. A test is then carried out to see if the player has done all

the steps needed. If all steps have been done the ‘success’ section of code flashes all four LEDs, adds one

more step to the topstep value, and then loops back to section 3.

6

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 1.2 11/2009
AXE106.P65

PICAXE ‘Simon Says’ Game

If there are still steps to do, the correct target value is retrieved from memory for comparison. The

program then enters a loop waiting for a switch to be pressed.

When the switch is pressed the switch is compared to the target value retrieved from memory. If the

values are the same everything is correct and so the LED is lit via the ‘beep’ sub-procedure, the players

position is increased by one and the program loops back for another switch push.

If the value is incorrect, the ‘fail’ section of code makes a noise and the resets the game.

Summary

Single chip controllers are not new, this game was using them 25 years ago. However electronics has

changed dramatically over the last 25 years, and modern microcontrollers are much cheaper and easier to

use than the original ’microcomputers’. Modern microcontrollers reduce large complex circuits down to

simple clean designs, and also dramatically reduce the cost of these products. LED technology has

improved, and no game would ever be manufactured now with bulbs due to cost, safety and power

consumption.

.

The example program given is fairly complex, but shows the enormous capabilities of the low-cost

microcontrollers. If you wish to build this circuit a PCB is available from Revolution, part AXE106

(www.picaxe.co.uk).

Figure 6 – Simon Says program

‘ AXE106 Simon Says Game

‘ *** Define the variables used ***

‘ Push switches on inputs 0,1,6,7
‘ Speed preset on input 2
‘ LEDs on outputs 0-3
‘ Piezo on output 7

symbol rand = b1 ‘ random number store for loading memory
symbol value = b2 ‘ switch value 0-1-2-3
symbol playerstep = b3 ‘ position of player in game
symbol freq = b4 ‘ sound variable
symbol topstep = b5 ‘ number of steps in sequence
symbol counter = b6 ‘ general purpose counter
symbol speed = b7 ‘ speed

‘ *** Section 1 **********************
‘ *** This section waits for start ***
‘ ************************************

‘ wait for any switch to be pushed
‘ with all four LEDs lit
‘ preload rand with any number by repeatedly
‘ using the random command in the loop

init:
let pins = %00001111
random rand
if pin0 = 1 then preload
if pin1 = 1 then preload
if pin6 = 1 then preload
if pin7 = 1 then preload
goto init

7

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 1.2 11/2009
AXE106.P65

PICAXE ‘Simon Says’ Game

‘ *** Section 2 ****************************
‘ *** This section loads memory for game ***
‘ **

‘ load EEPROM data memory with 100 numbers
‘ first get the random number (0 to 255)
‘ and then change to either 1,2,3 or 4
‘ and then save into data memory

preload:
let pins = %00000000 ‘ LEDs off

for counter = 0 to 30 ‘ for..next loop

let value = 0
random rand ‘ get random number 0-255
if rand > 180 then set0
if rand > 120 then set1
if rand > 60 then set2

set3: let value = value + 1 ‘1+1+1 = 3
set2: let value = value + 1 ‘1+1 = 2
set1: let value = value + 1 ‘1
set0: ‘0

write counter,value ‘ save in data memory

next counter ‘ next loop

‘ *** Section 3 ****************************
‘ *** This section plays back a sequence ***
‘ **

‘ switch off the LEDs and then start
‘ a game with the end counter as 1

let pins = %00000000 ‘ LEDs off
let topstep = 1 ‘ reset step number to 1

‘ playback the game sequence
playback:

readadc 2,speed ‘ read speed value

for counter = 1 to topstep ‘ for...next loop
 read counter,value ‘ get value
 gosub beep ‘ make the noise
 pause 300 ‘ short delay
next counter ‘ loop

‘ *** Section 4 ***
‘ *** This section detects the players reply sequence ***
‘ ***

‘ now the user responds
‘ reset the players position to 1

playerstep = 1

gameloop:
‘ if playerstep is greater than topstep then all done

if playerstep > topstep then success

‘ get the correct key value is supposed to hit
‘ from the EEPROM memory

read playerstep,value

‘ now wait for switch to be pressed
lp: if pin7 = 1 then pushed0

if pin0 = 1 then pushed1
if pin1 = 1 then pushed2
if pin6 = 1 then pushed3
goto lp

8

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 1.2 11/2009
AXE106.P65

PICAXE ‘Simon Says’ Game

‘ switch pressed so check it is the correct one
‘ if it is make a beep sound and then continue
‘ else fail the game
pushed0:

if value <> 0 then fail
let playerstep = playerstep + 1
gosub beep
goto gameloop

pushed1:
if value <> 1 then fail
let playerstep = playerstep + 1
gosub beep
goto gameloop

pushed2:
if value <> 2 then fail
let playerstep = playerstep + 1
gosub beep
goto gameloop

pushed3:
if value <> 3 then fail
let playerstep = playerstep + 1
gosub beep
goto gameloop

‘ *** Failed so make noise and jump back to start ***
‘ failed so make failed noise, switch off all LEDs
‘ and go back to start
fail:

let pins = %0000000 ‘ all LEDs off
sound 7,(80,100) ‘ make a noise
sound 7,(50,100)
goto init ‘ back to start

‘ *** Succeeded so add another step to sequence and loop ***

‘ success so make a success sound
‘ and then increment topstep and do another sequence
success:

pause 100 ‘ short delay
let pins = %00001111 ‘ all LEDs on
sound 7,(120,50) ‘ success beep
let pins = %00000000 ‘ all LEDs off
pause 100 ‘ short delay
let topstep = topstep + 1 ‘ add another step
goto playback ‘ loop again

‘ *** Section 5 ****************
‘ *** sub light LED and beep ***
‘ ******************************

‘sub-procedure to light correct LED
‘and make a different beep sound for each LED
‘value always contains number 0,1,2 or 3.
‘add 1 and multiply by 20 to give larger difference
‘in the sound noise

beep:
high value ‘ switch on LED
freq = value + 1 ‘ generate sound freq.
freq = freq * 25
sound 7,(freq,speed) ‘ play sound
low value ‘ switch off LED
return ‘ return

